Chatchawan Jantasuriyarat
Kasetsart University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chatchawan Jantasuriyarat.
Plant Physiology | 2004
Malali Gowda; Chatchawan Jantasuriyarat; Ralph A. Dean; Guo-Liang Wang
Serial analysis of gene expression (SAGE) is a widely used technique for large-scale transcriptome analysis in mammalian systems. Recently, a modified version called LongSAGE (S. Saha, A.B. Sparks, C. Rago, V. Akmaev, C.J. Wang, B. Vogelstein, K.W. Kinzler [2002] Nat Biotechnol 20: 508-512) was reported by increasing tag length up to 21 bp. Although the procedures for these two methods are similar, a detailed protocol for LongSAGE library construction has not been reported yet, and several technical difficulties associated with concatemer cloning and purification have not been solved. In this study, we report a substantially improved LongSAGE method called Robust-LongSAGE, which has four major improvements when compared with the previously reported protocols. First, a small amount of mRNA (50 ng) was enough for a library construction. Second, enhancement of cDNA adapter and ditag formation was achieved through an extended ligation period (overnight). Third, only 20 ditag polymerase chain reactions were needed to obtain a complete library (up to 90% reduction compared with the original protocols). Fourth, concatemers were partially digested with NlaIII before cloning into vector (pZEro-1), greatly improving cloning efficiency. The significant contribution of Robust-LongSAGE is that it solved the major technical difficulties, such as low cloning efficiency and small insert sizes associated with existing SAGE and LongSAGE protocols. Using this protocol, one can generate two to three libraries, each containing over 4.5 million tags, within a month. We recently have constructed five libraries from rice (Oryza sativa), one from maize (Zea mays), and one from the rice blast fungus (Magnaporthe grisea).
Theoretical and Applied Genetics | 2004
Chatchawan Jantasuriyarat; M. I. Vales; Christy J. W. Watson; Oscar Riera-Lizarazu
Recombinant inbred lines of the International Triticeae Mapping Initiative (ITMI) mapping population were used to localize genetic loci that affect traits related to the free-threshing habit (percent threshability, glume tenacity, and spike fragility) and to spike morphology (spike length, spikelet number, and spike compactness) of wheat (Triticum aestivum L.). The ITMI population was planted in three environments during 1999 and 2000, and phenotypic and genotypic data were used for composite interval mapping. Two quantitative trait loci (QTL) that consistently affected threshability-associated traits were localized on chromosomes 2D and 5A. Coincident QTL on the short arm of 2D explained 44% of the variation in threshability, 17% of the variation in glume tenacity, and 42% of the variation in rachis fragility. QTL on chromosomes 2D probably represent the effect of Tg, a gene for tenacious glumes. Coincident QTL on the long arm of 5A explained 21% and 10% of the variation in glume tenacity and rachis fragility, respectively. QTL on 5A are believed to represent the effect of Q. Overall, free-threshing-related characteristics were predominantly affected by Tg and to a lesser extent by Q. Other QTL that were significantly associated with threshability-related traits in at least one environment were localized on chromosomes 2A, 2B, 6A, 6D, and 7B. Four QTL on chromosomes 1B, 4A, 6A, and 7A consistently affected spike characteristics. Coincident QTL on the short arm of chromosome 1B explained 18% and 7% of the variation in spike length and spike compactness, respectively. QTL on the long arm of 4A explained 11%, 14%, and 12% of the variation in spike length, spike compactness, and spikelet number, respectively. A QTL on the short arm of 6A explained 27% of the phenotypic variance for spike compactness, while a QTL on the long arm of 7A explained 18% of the variation in spikelet number. QTL on chromosomes 1B and 6A appear to affect spike dimensions by modulating rachis internode length, while QTL on chromosomes 4A and 7A do so by affecting the formation of spikelets. Other QTL that were significantly associated with spike morphology-related traits, in at least one environment, were localized on chromosomes 2B, 3A, 3D, 4D, and 5A.
Plant Physiology | 2005
Chatchawan Jantasuriyarat; Malali Gowda; Karl Haller; Jamie Hatfield; Guodong Lu; Eric Stahlberg; Bo Zhou; Huameng Li; HyRan Kim; Yeisoo Yu; Ralph A. Dean; Rod A. Wing; Carol Soderlund; Guo-Liang Wang
To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constructed using infected leaf tissues harvested from 6 conditions: resistant, partially resistant, and susceptible reactions at both 6 and 24 h after inoculation. Two additional libraries were constructed using uninoculated leaves and leaves from the lesion mimic mutant spl11. A total of 68,920 ESTs were generated from 8 libraries. Clustering and assembly analyses resulted in 13,570 unique sequences from 10,934 contigs and 2,636 singletons. Gene function classification showed that 42% of the ESTs were predicted to have putative gene function. Comparison of the pathogen-challenged libraries with the uninoculated control library revealed an increase in the percentage of genes in the functional categories of defense and signal transduction mechanisms and cell cycle control, cell division, and chromosome partitioning. In addition, hierarchical clustering analysis grouped the eight libraries based on their disease reactions. A total of 7,748 new and unique ESTs were identified from our collection compared with the KOME full-length cDNA collection. Interestingly, we found that rice ESTs are more closely related to sorghum (Sorghum bicolor) ESTs than to barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays) ESTs. The large cataloged collection of rice ESTs in this study provides a solid foundation for further characterization of the rice defense response and is a useful public genomic resource for rice functional genomics studies.
Molecular Genetics and Genomics | 2007
R. C. Venu; Yulin Jia; Malali Gowda; Melissa H. Jia; Chatchawan Jantasuriyarat; Eric Stahlberg; Huameng Li; Andrew Rhineheart; Prashanth R. Boddhireddy; Pratibha Singh; Neil Rutger; David Kudrna; Rod A. Wing; James C. Nelson; Guo-Liang Wang
Sheath blight caused by the fungal pathogen Rhizoctonia solani is an emerging problem in rice production worldwide. To elucidate the molecular basis of rice defense to the pathogen, RNA isolated from R. solani-infected leaves of Jasmine 85 was used for both RL-SAGE library construction and microarray hybridization. RL-SAGE sequence analysis identified 20,233 and 24,049 distinct tags from the control and inoculated libraries, respectively. Nearly half of the significant tags (≥2 copies) from both libraries matched TIGR annotated genes and KOME full-length cDNAs. Among them, 42% represented sense and 7% antisense transcripts, respectively. Interestingly, 60% of the library-specific (≥10 copies) and differentially expressed (>4.0-fold change) tags were novel transcripts matching genomic sequence but not annotated genes. About 70% of the genes identified in the SAGE libraries showed similar expression patterns (up or down-regulated) in the microarray data obtained from three biological replications. Some candidate RL-SAGE tags and microarray genes were located in known sheath blight QTL regions. The expression of ten differentially expressed RL-SAGE tags was confirmed with RT-PCR. The defense genes associated with resistance to R. solani identified in this study are useful genomic materials for further elucidation of the molecular basis of the defense response to R. solani and fine mapping of target sheath blight QTLs.
Theoretical and Applied Genetics | 2004
Guodong Lu; Chatchawan Jantasuriyarat; Bo Zhou; Guo-Liang Wang
To identify early-induced defense genes involved in broad-spectrum resistance to rice blast, suppression subtractive hybridization was used to generate two cDNA libraries enriched for transcripts differentially expressed in Pi9(t)-resistant and -susceptible plants. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced and analyzed. Forty-seven unique cDNA clones were found and assigned to eight different groups according to the putative function of their homologous genes in the database. These genes may be involved in pathogen or stress response, signal transduction, transcription, cell transport, metabolism, energy or protein destination. Northern blot analysis showed that most of these genes were induced or suppressed after blast infection, and that half of them showed differential expression patterns between compatible and incompatible interactions. Interestingly, all but one of the identified genes are reported here for the first time to be involved in defense response to rice blast. In addition, hybridization of these clones with cDNAs synthesized from RNA samples from bacterial blight-infected leaves showed that few of them are induced or repressed in Xa21- or Xa7-resistant plants, suggesting a minimum overlap of defense responses mediated by different resistance genes to fungal and bacterial pathogens at an early stage of infection. Further characterization and functional analysis of these genes will enhance our understanding of the molecular mechanism of broad-spectrum resistance in rice.
Plant Physiology | 2007
Malali Gowda; R. C. Venu; Huameng Li; Chatchawan Jantasuriyarat; Songbiao Chen; Maria Bellizzi; Vishal Pampanwar; HyeRan Kim; Ralph A. Dean; Eric Stahlberg; Rod A. Wing; Cari Soderlund; Guo-Liang Wang
Rice blast disease, caused by the fungal pathogen Magnaporthe grisea, is an excellent model system to study plant-fungal interactions and host defense responses. In this study, comprehensive analysis of the rice (Oryza sativa) transcriptome after M. grisea infection was conducted using robust-long serial analysis of gene expression. A total of 83,382 distinct 21-bp robust-long serial analysis of gene expression tags were identified from 627,262 individual tags isolated from the resistant (R), susceptible (S), and control (C) libraries. Sequence analysis revealed that the tags in the R and S libraries had a significant reduced matching rate to the rice genomic and expressed sequences in comparison to the C library. The high level of one-nucleotide mismatches of the R and S library tags was due to nucleotide conversions. The A-to-G and U-to-C nucleotide conversions were the most predominant types, which were induced in the M. grisea-infected plants. Reverse transcription-polymerase chain reaction analysis showed that expression of the adenine deaminase and cytidine deaminase genes was highly induced after inoculation. In addition, many antisense transcripts were induced in infected plants and expression of four antisense transcripts was confirmed by strand-specific reverse transcription-polymerase chain reaction. These results demonstrate that there is a series of dynamic and complex transcript modifications and changes in the rice transcriptome at the M. grisea early infection stages.
Gene | 2012
P. Uthaipaisanwong; Juntima Chanprasert; Jeremy R. Shearman; Duangjai Sangsrakru; Thippawan Yoocha; Nukoon Jomchai; Chatchawan Jantasuriyarat; Somvong Tragoonrung; Sithichoke Tangphatsornruang
Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of 85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees.
Genomics | 2013
Jeremy R. Shearman; Chatchawan Jantasuriyarat; Duangjai Sangsrakru; Thippawan Yoocha; Apichart Vannavichit; Somvong Tragoonrung; Sithichoke Tangphatsornruang
Elaeis guineensis (oil palm) accounts for a large and increasing proportion of the worlds cooking oil production. Cloning via somatic embryogenesis results in a somaclonal variant known as mantled which produce fruit with little to no oil yield. The mantled phenotype is believed to be epigenetic in nature. We performed RNA-Seq on developing flower and fruit samples of normal and mantled oil palm to characterize their transcriptomes. We present expression data for all transcripts in normal and mantled flower and fruit samples. Many genes are differentially expressed, including several from pathways that may be the cause of the mantled phenotype if disrupted, such as genes involved in primary hormone responses, DNA replication and repair, chromatin remodeling and a gene involved in RNA mediated DNA methylation. In addition, the gene expression data for developing flower and fruit will serve as a valuable resource for oil palm genetics and genomic studies.
BMC Plant Biology | 2012
Peerapat Roongsattham; Fabienne Morcillo; Chatchawan Jantasuriyarat; Maxime Pizot; Steven Moussu; Dasuni Jayaweera; Myriam Collin; Zinnia H. González-Carranza; Philippe Amblard; James W. Tregear; Somvong Tragoonrung; Jean-Luc Verdeil; Timothy John Tranbarger
BackgroundCell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG) multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process.ResultsThe objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most highly induced in the fruit base, with a 700–5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation.ConclusionsThe expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred between monocots and eudicots, in particular between dry and fleshy fruit species.
Theoretical and Applied Genetics | 2010
Liangying Dai; Jun Wu; Xunbo Li; Xuejun Wang; Xionglun Liu; Chatchawan Jantasuriyarat; Dave Kudrna; Yeisoo Yu; Rod A. Wing; Bin Han; Bo Zhou; Guo-Liang Wang
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a devastating disease of rice worldwide. Among the 85 mapped resistance (R) genes against blast, 13 have been cloned and characterized. However, how these genes originated and how they evolved in the Oryza genus remains unclear. We previously cloned the rice blast R-genes Pi2, Pi9, and Piz-t, and analyzed their genomic structure and evolution in cultivated rice. In this study, we determined the genomic sequences of the Pi2/9 locus in four wild Oryza species representing three genomes (AA, BB and CC). The number of Pi2/9 family members in the four wild species ranges from two copies to 12 copies. Although these genes are conserved in structure and categorized into the same subfamily, sequence duplications and subsequent inversions or uneven crossing overs were observed, suggesting that the locus in different wild species has undergone dynamic changes. Positive selection was found in the leucine-rich repeat region of most members, especially in the largest clade where Pi9 is included. We also provide evidence that the Pi9 gene is more related to its homologues in the recurrent line and other rice cultivars than to those in its alleged donor species O. minuta, indicating a possible origin of the Pi9 gene from O. sativa. Comparative sequence analysis between the four wild Oryza species and the previously established reference sequences in cultivated rice species at the Pi2/9 locus has provided extensive and unique information on the genomic structure and evolution of a complex R-gene cluster in the Oryza genus.
Collaboration
Dive into the Chatchawan Jantasuriyarat's collaboration.
Thailand National Science and Technology Development Agency
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputsThailand National Science and Technology Development Agency
View shared research outputs