Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chau-Lyan Chang is active.

Publication


Featured researches published by Chau-Lyan Chang.


Journal of Fluid Mechanics | 1994

Crossflow disturbances in three-dimensional boundary layers : nonlinear development, wave interaction and secondary instability

Mujeeb R. Malik; Fei Li; Chau-Lyan Chang

Nonlinear stability of a model swept-wing boundary layer, subject to crossflow instability, is investigated by numerically solving the governing partial differential equations. The three-dimensional boundary layer is unstable to both stationary and travelling crossflow disturbances. Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble quite well the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in these calculations. Nonlinear interaction of the stationary and travelling waves is also studied. When initial amplitude of the stationary vortex is larger than the travelling mode, the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the travelling mode dominates the downstream development owing to its higher growth rate. It is also found that, prior to laminar/turbulent transition, the three-dimensional boundary layer is subject to a high-frequency secondary instability, which is in agreement with the experiments of Poll (1985) and Kohama, Saric & Hoos (1991). The frequency of this secondary instability, which resides on top of the stationary crossflow vortex, is an order of magnitude higher than the frequency of the most-amplified travelling crossflow mode.


Journal of Fluid Mechanics | 1999

Secondary instability of crossflow vortices and swept-wing boundary-layer transition

Mujeeb R. Malik; Fei Li; Meelan M. Choudhari; Chau-Lyan Chang

Crossflow instability of a three-dimensional boundary layer is a common cause of transition in swept-wing flows. The boundary-layer flow modified by the presence of finite-amplitude crossflow modes is susceptible to high-frequency secondary instabilities, which are believed to harbinger the onset of transition. The role of secondary instability in transition prediction is theoretically examined for the recent swept-wing experimental data by Reibert et al . (1996). Exploiting the experimental observation that the underlying three-dimensional boundary layer is convectively unstable, non-linear parabolized stability equations are used to compute a new basic state for the secondary instability analysis based on a two-dimensional eigenvalue approach. The predicted evolution of stationary crossflow vortices is in close agreement with the experimental data. The suppression of naturally dominant crossflow modes by artificial roughness distribution at a subcritical spacing is also confirmed. The analysis reveals a number of secondary instability modes belonging to two basic families which, in some sense, are akin to the ‘horseshoe’ and ‘sinuous’ modes of the Gortler vortex problem. The frequency range of the secondary instability is consistent with that measured in earlier experiments by Kohama et al . (1991), as is the overall growth of the secondary instability mode prior to the onset of transition (e.g. Kohama et al . 1996). Results indicate that the N -factor correlation based on secondary instability growth rates may yield a more robust criterion for transition onset prediction in comparison with an absolute amplitude criterion that is based on primary instability alone.


23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference | 1993

Non-parallel stability of compressible boundary layers

Chau-Lyan Chang; Mujeeb R. Malik

Linear and nonlinear stability of compressible growing boundary layers is studied using parabolized stability equations (PSE). Linear PSE calculations are performed for Mach 1.6 and 4.5 plate-plate flow, and the results are compared with the predictions of the multiple-scales approach. In general, the nonparallel effect appears to be less significant for oblique waves near the lower neutral branch but it progressively becomes important at higher Reynolds numbers near the upper branch. In contrast, the nonparallel effect is more pronounced near the lower branch for two-dimensional first-mode waves. The PSE and multiple-scales results agree for the first mode waves, but in the first-second mode transition region, the latter approach tends to break down. Comparison with the first (oblique) and second mode growth rate data from Kendalls (1967) experiment shows good agreement; however, the peak second mode growth rate is over-predicted. Similar conclusions are drawn for the second mode experiment of Stetson et al. (1983) for Mach 8 flow past a sharp cone. We conjecture that the lower experimental growth rate is due to nonlinear saturation and provide supporting calculations.


48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition | 2010

Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer

Meelan M. Choudhari; Fei Li; Minwei Wu; Chau-Lyan Chang; Jack R. Edwards; Michael A. Kegerise; Rudolph A. King

Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.


42nd AIAA Fluid Dynamics Conference and Exhibit | 2012

Stability Analysis for HIFiRE Experiments

Fei Li; Meelan M. Choudhari; Chau-Lyan Chang; Jeffery A. White; Roger L. Kimmel; David Adamczak; Matthew P. Borg; Scott Stanfield; Mark S. Smith

The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the crossflow dominated transition over the HIFiRE-1 and HIFiRE-5 configurations, this paper also analyzes boundary layer instabilities over a subscale model of the HIFiRE-5 flight configuration that was tested in the Mach 6 quiet tunnel facility at Purdue University.


10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference | 2010

Analysis of Instabilities in Non-Axisymmetric Hypersonic Boundary Layers Over Cones

Fei Li; Meelan Choudhari; Chau-Lyan Chang; Jeffery A. White

Hypersonic flows over circular cones constitute one of the most important generic configurations for fundamental aerodynamic and aerothermodynamic studies. In this paper, numerical computations are carried out for Mach 6 flows over a 7-degree half-angle cone with two different flow incidence angles and a compression cone with a large concave curvature. Instability wave and transition-related flow physics are investigated using a series of advanced stability methods ranging from conventional linear stability theory (LST) and a higher-fidelity linear and nonlinear parabolized stability equations (PSE), to the 2D eigenvalue analysis based on partial differential equations. Computed N factor distribution pertinent to various instability mechanisms over the cone surface provides initial assessments of possible transition fronts and a guide to corresponding disturbance characteristics such as frequency and azimuthal wave numbers. It is also shown that strong secondary instability that eventually leads to transition to turbulence can be simulated very efficiently using a combination of advanced stability methods described above.


41st Aerospace Sciences Meeting and Exhibit | 2003

Integrated Transition Prediction: A Case Study in Supersonic Laminar Flow Control

Meelan Choudhari; Chau-Lyan Chang; Craig L. Streett; P. Balakumar

† Aerospace Technologist, Computational Modeling and Simulation Branch, Senior Member AIAA Email: [email protected] †† Aerospace Technologist, Computational Modeling and Simulation Branch, Senior Member AIAA ††† Aerospace Technologist, Computational Modeling and Simulation Branch. * Aerospace Technologist, Flow Physics and Control Branch, Senior Member AIAA Copyright


48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition | 2010

Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

Chau-Lyan Chang; Meelan M. Choudhari; Fei Li

Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.


41st AIAA Fluid Dynamics Conference and Exhibit | 2011

Transition Analysis for the HIFiRE-1 Flight Experiment

Fei Li; Meelan M. Choudhari; Chau-Lyan Chang; Roger L. Kimmel; David Adamczak; Mark S. Smith

The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of incidence. This paper reports the initial findings from the ongoing computational analysis pertaining to the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The first mode instabilities were found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear PSE N-factor of approximately 14.


43rd AIAA Aerospace Sciences Meeting and Exhibit | 2005

Boundary-Layer Receptivity and Integrated Transition Prediction

Chau-Lyan Chang; Meelan Choudhari

The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Greens function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

Collaboration


Dive into the Chau-Lyan Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Adamczak

Wright-Patterson Air Force Base

View shared research outputs
Top Co-Authors

Avatar

Jack R. Edwards

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Roger L. Kimmel

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hiroaki Ishikawa

Japan Aerospace Exploration Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge