Chau-To Kwok
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chau-To Kwok.
Cancer Cell | 2011
Megan P. Hitchins; Robert W. Rapkins; Chau-To Kwok; Sameer Srivastava; Justin Wong; Levon M. Khachigian; Patsie Polly; Jack Goldblatt; Robyn L. Ward
Constitutional epimutations of tumor suppressor genes manifest as promoter methylation and transcriptional silencing of a single allele in normal somatic tissues, thereby predisposing to cancer. Constitutional MLH1 epimutations occur in individuals with young-onset cancer and demonstrate non-Mendelian inheritance through their reversal in the germline. We report a cancer-affected family showing dominant transmission of soma-wide highly mosaic MLH1 methylation and transcriptional repression linked to a particular genetic haplotype. The epimutation was erased in spermatozoa but reinstated in the somatic cells of the next generation. The affected haplotype harbored two single nucleotide substitutions in tandem; c.-27C > A located near the transcription initiation site and c.85G > T. The c.-27C > A variant significantly reduced transcriptional activity in reporter assays and is the probable cause of this epimutation.
Cancer Research | 2007
Megan P. Hitchins; Andrew Buckle; Kayfong Cheong; Nimita Halani; Su Ku; Chau-To Kwok; Deborah Packham; Catherine M. Suter; Alan P. Meagher; Clare Stirzaker; Susan J. Clark; Nicholas J. Hawkins; Robyn L. Ward
Biallelic promoter methylation and transcriptional silencing of the MLH1 gene occurs in the majority of sporadic colorectal cancers exhibiting microsatellite instability due to defective DNA mismatch repair. Long-range epigenetic silencing of contiguous genes has been found on chromosome 2q14 in colorectal cancer. We hypothesized that epigenetic silencing of MLH1 could occur on a regional scale affecting additional genes within 3p22, rather than as a focal event. We studied the levels of CpG island methylation and expression of multiple contiguous genes across a 4 Mb segment of 3p22 including MLH1 in microsatellite-unstable and -stable cancers, and their paired normal colonic mucosa. We found concordant CpG island hypermethylation, H3-K9 dimethylation and transcriptional silencing of MLH1 and multiple flanking genes spanning up to 2.4 Mb in microsatellite-unstable colorectal cancers. This region was interspersed with unmethylated genes, which were also transcriptionally repressed. Expression of both methylated and unmethylated genes was reactivated by methyltransferase and histone deacetylase inhibitors in a microsatellite-unstable colorectal carcinoma cell line. Two genes at the telomeric end of the region were also hypermethylated in microsatellite-stable cancers, adenomas, and at low levels in normal colonic mucosa from older individuals. Thus, the cluster of genes flanking MLH1 that was specifically methylated in the microsatellite-unstable group of cancers extended across 1.1 Mb. Our results show that coordinate epigenetic silencing extends across a large chromosomal region encompassing MLH1 in microsatellite-unstable colorectal cancers. Simultaneous epigenetic silencing of this cluster of 3p22 genes may contribute to the development or progression of this type of cancer.
Modern Pathology | 2009
Nicholas J. Hawkins; James F. Lee; Justin Wong; Chau-To Kwok; Robyn L. Ward; Megan P. Hitchins
O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that restores mutagenic O6-methylguanine to guanine. MGMT methylation is frequently observed in sporadic colorectal cancer and was recently correlated with the C>T allele at SNP rs16906252, within the transcriptional enhancer element of the promoter. MGMT methylation has also been associated with KRAS mutations, particularly G>A transitions. We studied 1123 colorectal carcinoma to define the molecular and clinicopathological profiles associated with MGMT methylation. Furthermore, we assessed factors contributing to MGMT methylation in the development of colorectal cancer by studying the allelic pattern of MGMT methylation using SNP rs16906252, and the methylation status of neighbouring genes within 10q26 in selected tumours and matched normal colonic mucosa. MGMT methylation was detected by combined bisulphite restriction analysis in 28% of tumours and was associated with a number of characteristics, including CDKN2A methylation, absent lymphovascular space invasion and KRAS mutations (but not specifically with KRAS G>A transitions). In a multivariate analysis adjusted for age and sex, MGMT methylation was associated with the T allele of SNP rs16906252 (P<0.0001, OR 5.5, 95% CI 3.8–7.9). Low-level methylation was detected by quantitative methylation-specific PCR in the normal colonic mucosa of cases, particularly those with a correspondingly methylated tumour, as well as controls without neoplasia, and this was also associated with the C>T SNP. We show that the T allele at SNP rs16906252 is a key determinant in the onset of MGMT methylation in colorectal cancer, whereas the association of methylation at MGMT and CDKN2A suggests that these loci may be targets of a common mechanism of epigenetic dysregulation.
European Journal of Human Genetics | 2014
Chau-To Kwok; Ingrid P. Vogelaar; Wendy A. G. van Zelst-Stams; Arjen R. Mensenkamp; Marjolijn J. L. Ligtenberg; Robert W. Rapkins; Robyn L. Ward; Nicolette M. Chun; James M. Ford; Uri Ladabaum; Wendy McKinnon; Marc S. Greenblatt; Megan P. Hitchins
Germline mutations of the DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2, and deletions affecting the EPCAM gene adjacent to MSH2, underlie Lynch syndrome by predisposing to early-onset colorectal, endometrial and other cancers. An alternative but rare cause of Lynch syndrome is constitutional epimutation of MLH1, whereby promoter methylation and transcriptional silencing of one allele occurs throughout normal tissues. A dominantly transmitted constitutional MLH1 epimutation has been linked to an MLH1 haplotype bearing two single-nucleotide variants, NM_000249.2: c.−27C>A and c.85G>T, in a Caucasian family with Lynch syndrome from Western Australia. Subsequently, a second seemingly unrelated Caucasian Australian case with the same MLH1 haplotype and concomitant epimutation was reported. We now describe three additional, ostensibly unrelated, cancer-affected families of European heritage with this MLH1 haplotype in association with constitutional epimutation, bringing the number of index cases reported to five. Array-based genotyping in four of these families revealed shared haplotypes between individual families that extended across ≤2.6–≤6.4 megabase regions of chromosome 3p, indicating common ancestry. A minimal ≤2.6 megabase founder haplotype common to all four families was identified, which encompassed MLH1 and additional flanking genes and segregated with the MLH1 epimutation in each family. Our findings indicate that the MLH1 c.−27C>A and c.85G>T variants are borne on a European ancestral haplotype and provide conclusive evidence for its pathogenicity via a mechanism of epigenetic silencing of MLH1 within normal tissues. Additional descendants bearing this founder haplotype may exist who are also at high risk of developing Lynch syndrome-related cancers.
Nature Communications | 2017
Justin Wong; Dadi Gao; Trung V. Nguyen; Chau-To Kwok; Michelle van Geldermalsen; Rob Middleton; Natalia Pinello; Annora Thoeng; Rajini Nagarajah; Jeff Holst; William Ritchie; John E.J. Rasko
While intron retention (IR) is considered a widely conserved and distinct mechanism of gene expression control, its regulation is poorly understood. Here we show that DNA methylation directly regulates IR. We also find reduced occupancy of MeCP2 near the splice junctions of retained introns, mirroring the reduced DNA methylation at these sites. Accordingly, MeCP2 depletion in tissues and cells enhances IR. By analysing the MeCP2 interactome using mass spectrometry and RNA co-precipitation, we demonstrate that decreased MeCP2 binding near splice junctions facilitates IR via reduced recruitment of splicing factors, including Tra2b, and increased RNA polymerase II stalling. These results suggest an association between IR and a slower rate of transcription elongation, which reflects inefficient splicing factor recruitment. In summary, our results reinforce the interdependency between alternative splicing involving IR and epigenetic controls of gene expression.
Familial Cancer | 2010
Chau-To Kwok; Robyn L. Ward; Nicholas J. Hawkins; Megan P. Hitchins
Lynch syndrome is an autosomal dominant cancer susceptibility syndrome characterized by the early development of microsatellite unstable colorectal, endometrial and other cancers. Lynch syndrome is caused by germline heterozygous loss-of-function sequence mutations within the mismatch repair genes MLH1, MSH2, MSH6 or PMS2. Some individuals with Lynch syndrome have constitutional epimutations, characterized by promoter methylation and transcriptional inactivation of a single allele in normal somatic tissues, while others lack identifiable pathogenic changes in the germline. We hypothesized that analysis of the relative levels of allelic expression of MLH1 would assist in the identification of cryptic pathogenic defects of MLH1 in five presumed Lynch syndrome cases whose tumours demonstrated MLH1 loss, but whose causative mutation remained unidentified. We exploited the common benign c.655A>G SNP (rs1799977) within MLH1 exon 8 to distinguish between the two genetic alleles in heterozygous individuals and to study their transcriptional activity, using quantitative pyrosequencing assays. In one of the five patients we detected loss of expression of one allele and deletion of the other allele in the tumour, prompting renewed germline screening. A novel intronic splice mutation was subsequently identified, which resulted in loss of an entire exon from the transcript. This pyrosequencing assay also proved useful in demonstrating the gradual reversal of a constitutional MLH1 epimutation during lymphoblastoid cell culture, suggesting this defect may not be stably maintained in immortalized cells. Our findings illustrate that the study of allelic behaviour can complement conventional molecular analyses by providing new insight into the genetic or epigenetic mechanisms underlying disease.
Disease Models & Mechanisms | 2013
Adam Collison; Jessica S. Siegle; Nicole G. Hansbro; Chau-To Kwok; Cristan Herbert; Joerg Mattes; Megan P. Hitchins; Paul S. Foster; Rakesh K. Kumar
SUMMARY Development of asthma in childhood is linked to viral infections of the lower respiratory tract in early life, with subsequent chronic exposure to allergens. Progression to persistent asthma is associated with a Th2-biased immunological response and structural remodelling of the airways. The underlying mechanisms are unclear, but could involve epigenetic changes. To investigate this, we employed a recently developed mouse model in which self-limited neonatal infection with a pneumovirus, followed by sensitisation to ovalbumin via the respiratory tract and low-level chronic challenge with aerosolised antigen, leads to development of an asthmatic phenotype. We assessed expression of microRNA by cells in the proximal airways, comparing changes over the period of disease progression, and used target prediction databases to identify genes likely to be up- or downregulated as a consequence of altered regulation of microRNA. In parallel, we assessed DNA methylation in pulmonary CD4+ T cells. We found that a limited number of microRNAs exhibited marked up- or downregulation following early-life infection and sensitisation, for many of which the levels of expression were further changed following chronic challenge with the sensitizing antigen. Targets of these microRNAs included genes involved in immune or inflammatory responses (e.g. Gata3, Kitl) and in tissue remodelling (e.g. Igf1, Tgfbr1), as well as genes for various transcription factors and signalling proteins. In pulmonary CD4+ T cells, there was significant demethylation at promoter sites for interleukin-4 and interferon-γ, the latter increasing following chronic challenge. We conclude that, in this model, progression to an asthmatic phenotype is linked to epigenetic regulation of genes associated with inflammation and structural remodelling, and with T-cell commitment to a Th2 immunological response. Epigenetic changes associated with this pattern of gene activation might play a role in the development of childhood asthma.
JAMA Oncology | 2015
Mathew A. Sloane; Andrea C. Nunez; Deborah Packham; Chau-To Kwok; Graeme Suthers; Luke B. Hesson; Robyn L. Ward
IMPORTANCE Constitutional hypermethylation of 1 allele throughout the soma (constitutional epimutation) is an accepted mechanism of cancer predisposition. Understanding the origin and inheritance of epimutations is important for assessing cancer risk in affected families. OBSERVATIONS We report a 29-year-old man with early-onset colorectal cancer who showed a constitutional MLH1 epimutation (approximately 50% of alleles methylated and allele-specific loss of MLH1 expression) that was stable over a 16-year period. The epimutation was inherited without a genetic alteration from his asymptomatic mother. She showed methylation on the same allele but in less than 5% of her somatic cells. CONCLUSIONS AND RELEVANCE These findings indicate that low-level somatic mosaicism for an epimutation in an asymptomatic parent can produce a nonmosaic constitutional epimutation in a child. Asymptomatic low-level methylation in some individuals may be associated with substantial cancer risk to their offspring.
Methods of Molecular Biology | 2015
Chau-To Kwok; Megan P. Hitchins
Pyrosequencing(®) is able to quantitate the level of a nucleotide at a designated germ-line or somatic variant, including single nucleotide polymorphisms (SNPs). SNPs within a gene of interest may be used to distinguish between the two genetic alleles and study their behavior in heterozygous individuals. With regard to cancer etiology and development, identification of alleles and the detection of allelic imbalances, such as transcriptional loss from one allele or loss-of-heterozygosity (due to deletion of one allele), within a tumor are particularly useful. Lynch syndrome, the most common form of hereditary bowel and uterine cancer, is caused by heterozygous germ-line mutations within the DNA mismatch repair genes and tumors develop following inactivation of the remaining functional allele within somatic tissues, usually by acquired loss-of-heterozygosity. MLH1 is the most frequently mutated gene in Lynch syndrome; however, some cases whose tumors display immunohistochemical loss of the MLH1 protein have no apparent mutation within the coding region of MLH1. Allelic loss of expression or reduced function of MLH1 can also result in the propensity to develop Lynch syndrome associated cancers. In this chapter we describe allele quantification Pyrosequencing assays designed at a common benign SNP within the MLH1 coding region for application to either DNA or mRNA (cDNA) templates, which enabled us to detect pathological allelic imbalances in such cases with suspected Lynch syndrome. Our allele quantification Pyrosequencing assays at the MLH1 c.655A > G (rs1799977) exonic SNP were applied to clinical specimens and detected both constitutional allelic expression loss and tumor loss-of-heterozygosity in some cases, facilitating the identification of the mechanistic cause underlying their cancer development. We provide detailed protocols for implementing these Pyrosequencing assays and illustrative examples of their application in patients.
Familial Cancer | 2011
Robert W. Rapkins; Chau-To Kwok; Robyn L. Ward; Megan P. Hitchins
Resumen de la comunicacion presentada en 4th Biennial Meeting : International Society for Gastrointestinal Hereditary Tumours San Antonio, Texas, March 31-April 2, 2011.4th Biennial Meeting: International Society for Gastrointestinal Hereditary Tumours San Antonio, Texas, March 31–April 2, 2011 Springer Science+Business Media B.V. 2011 1 Basic Science Session I, Thursday, March 31, 2011,