Chaya Keller
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaya Keller.
Israel Journal of Mathematics | 2018
Chaya Keller; Shakhar Smorodinsky; Gábor Tardos
AbstractLet HDd(p, q) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (p, q)-property (p ≥ q ≥ d + 1). In a celebrated proof of the Hadwiger–Debrunner conjecture, Alon and Kleitman proved that HDd(p, q) exists for all p ≥ q ≥ d + 1. Specifically, they prove that
symposium on discrete algorithms | 2017
Chaya Keller; Shakhar Smorodinsky; Gábor Tardos
arXiv: Combinatorics | 2013
Chaya Keller; Micha A. Perles; Eduardo Rivera-Campo; Virginia Urrutia-Galicia
H{D_d}(p,d + 1)is\tilde O({p^{{d^2} + d}})
Discrete and Computational Geometry | 2018
Chaya Keller; Micha A. Perles
Computational Geometry: Theory and Applications | 2018
Chaya Keller; Yael Stein
HDd(p,d+1)isO˜(pd2+d) .We present several improved bounds: (i) For any
Computational Geometry: Theory and Applications | 2018
Chaya Keller; Shakhar Smorodinsky
Israel Journal of Mathematics | 2012
Chaya Keller; Micha A. Perles
q \geqslant d + 1,H{D_d}(p,d) = \tilde O({p^{d(\frac{{q - 1}}{{q - d}})}})
Discrete and Computational Geometry | 2016
Chaya Keller; Micha A. Perles
Discrete and Computational Geometry | 2013
Chaya Keller; Micha A. Perles
q≥d+1,HDd(p,d)=O˜(pd(q−1q−d)) . (ii) For q ≥ log p,
Graphs and Combinatorics | 2016
Chaya Keller; Micha A. Perles