Che Julius Ngwa
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Che Julius Ngwa.
Biology Letters | 2012
Christian René Röhrich; Che Julius Ngwa; Jochen Wiesner; Henrike Schmidtberg; Thomas Degenkolb; Christian Kollewe; Rainer Fischer; Gabriele Pradel; Andreas Vilcinskas
The harlequin ladybird beetle Harmonia axyridis has been introduced in many countries as a biological control agent, but has become an invasive species threatening the biodiversity of native ladybirds. Its invasive success has been attributed to its vigorous resistance against diverse pathogens. This study demonstrates that harmonine ((17R,9Z)-1,17-diaminooctadec-9-ene), which is present in H. axyridis haemolymph, displays broad-spectrum antimicrobial activity that includes human pathogens. Antibacterial activity is most pronounced against fast-growing mycobacteria and Mycobacterium tuberculosis, and the growth of both chloroquine-sensitive and -resistant Plasmodium falciparum strains is inhibited. Harmonine displays gametocytocidal activity, and inhibits the exflagellation of microgametocytes and zygote formation. In an Anopheles stephensi mosquito feeding model, harmonine displays transmission-blocking activity.
Antimicrobial Agents and Chemotherapy | 2014
Katharine R. Trenholme; Linda Marek; Sandra Duffy; Gabriele Pradel; Gillian M. Fisher; Finn K. Hansen; Tina S. Skinner-Adams; Alice S. Butterworth; Che Julius Ngwa; Jonas Moecking; Christopher D. Goodman; Geoffrey I. McFadden; Subathdrage D.M. Sumanadasa; David P. Fairlie; Vicky M. Avery; Thomas Kurz; Katherine Thea Andrews
ABSTRACT Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology.
Cellular Microbiology | 2016
Thiago Ferreira de Araujo Rosa; Ansgar Flammersfeld; Che Julius Ngwa; Meike J. Kiesow; Rainer Fischer; Peter F. Zipfel; Christine Skerka; Gabriele Pradel
The acquisition of regulatory proteins is a means of blood‐borne pathogens to avoid destruction by the human complement. We recently showed that the gametes of the human malaria parasite Plasmodium falciparum bind factor H (FH) from the blood meal of the mosquito vector to assure successful sexual reproduction, which takes places in the mosquito midgut. While these findings provided a first glimpse of a complex mechanism used by Plasmodium to control the host immune attack, it is hitherto not known, how the pathogenic blood stages of the malaria parasite evade destruction by the human complement. We now show that the human complement system represents a severe threat for the replicating blood stages, particularly for the reinvading merozoites, with complement factor C3b accumulating on the surfaces of the intraerythrocytic schizonts as well as of free merozoites. C3b accumulation initiates terminal complement complex formation, in consequence resulting in blood stage lysis. To inactivate C3b, the parasites bind FH as well as related proteins FHL‐1 and CFHR‐1 to their surface, and FH binding is trypsin‐resistant. Schizonts acquire FH via two contact sites, which involve CCP modules 5 and 20. Blockage of FH‐mediated protection via anti‐FH antibodies results in significantly impaired blood stage replication, pointing to the plasmodial complement evasion machinery as a promising malaria vaccine target.
PLOS Neglected Tropical Diseases | 2015
Samuel Wanji; Ebanga Echi J. Eyong; Nicholas Tendongfor; Che Julius Ngwa; Elive N. Esuka; Arnaud J. Kengne-Ouafo; Fabrice R. Datchoua-Poutcheu; Peter Enyong; Adrian Hopkins; Charles D. Mackenzie
Background Loiasis, a filarial infection caused by Loa loa usually thought to cause relatively minor morbidity, can cause serious and often fatal reactions in patients carrying very high levels of circulating Loa loa microfilariae (mf) following administration of microfilaricidal drugs. An experimental model of this condition would greatly aid the definition of the optimal management of this important clinical presentation. Methodology/Principle Findings Fifteen baboons (Papio anubis) were infected with 600 infective larvae (L3) isolated from Chrysops vector flies. Animals were observed for any clinical changes; blood samples were collected every 1–2 months for 22 months, and analysed for parasitological, hematological and biochemical profiles using standard techniques. All animals became patent but remained clinically normal throughout the study. The parasitological pre-patent period was between 4–8 months, with a majority (60%) of animals becoming patent by 5 months post infection (MPI); all animals were patent by 8 MPI. Microfilarial loads increased steadily in all animals and reached a peak at 18 MPI. By 10 MPI >70% of animals had mf >8,000 mf/mL, and at 18 MPI >70% of animals had mf >30,000mf/mL with 50% of these animals with mf >50,000mf/mL. Absolute eosinophil, creatinine, Ca2+ and K+ levels were generally above normal values (NV). Positive associations were seen between microfilariaemia and eosinophilia, Hb, Ca2+, and gamma-GT values, whilst significant negative associations were seen between microfilariaemia and potassium, glucose and mononuclear leukocyte levels. Conclusions Infection of splenectomised baboons with L. loa can induce levels of circulating microfilariae, and corresponding haematological profiles, which parallel those seen in those humans in danger of the severe post-microfilariacide clinical responses. Utilization of this experimental model could contribute to the improved management of the loiasis related adverse responses in humans.
Bioorganic & Medicinal Chemistry | 2016
Ines Schmidt; Gabriele Pradel; Ludmilla Sologub; Alexandra Golzmann; Che Julius Ngwa; Anna Kucharski; Tanja Schirmeister; Ulrike Holzgrabe
Linking two tacrine molecules results in a tremendous increase of activity against Plasmodia in comparison to the monomer. This finding prompted the synthesis of a library of monomeric and dimeric tacrine derivatives in order to derive structure-activity relationships. The most active compounds towards chloroquine sensitive Plasmodium strain 3D7 and chloroquine resistant strain Dd2 show IC50 values in the nanomolar range of concentration, low cytotoxicity and target the cysteine protease falcipain-2, which is essential for parasite growth.
Tropical Medicine & International Health | 2017
Anitha Philbert; Sylvester Leonard Lyantagaye; Gabriele Pradel; Che Julius Ngwa; Gamba Nkwengulila
To assess the susceptibility status of malaria vectors to pyrethroids and dichlorodiphenyltrichloroethane (DDT), characterise the mechanisms underlying resistance and evaluate the role of agro‐chemical use in resistance selection among malaria vectors in Sengerema agro‐ecosystem zone, Tanzania.
PLOS Neglected Tropical Diseases | 2017
Samuel Wanji; Ebanga Echi J. Eyong; Nicholas Tendongfor; Che Julius Ngwa; Elive N. Esuka; Arnaud J. Kengne-Ouafo; Fabrice R. Datchoua-Poutcheu; Peter Enyong; Dalen W. Agnew; Rob R. Eversole; Adrian Hopkins; Charles Mackenzie
Background Individuals with high intensity of Loa loa are at risk of developing serious adverse events (SAEs) post treatment with ivermectin. These SAEs have remained unclear and a programmatic impediment to the advancement of community directed treatment with ivermectin. The pathogenesis of these SAEs following ivermectin has never been investigated experimentally. The Loa/baboon (Papio anubis) model can be used to investigate the pathogenesis of Loa-associated encephalopathy following ivermectin treatment in humans. Methods 12 baboons with microfilarial loads > 8,000mf/mL of blood were randomised into four groups: Group 1 (control group receiving no drug), Group 2 receiving ivermectin (IVM) alone, Group 3 receiving ivermectin plus aspirin (IVM + ASA), and Group 4 receiving ivermectin plus prednisone (IVM + PSE). Blood samples collected before treatment and at Day 5, 7 or 10 post treatment, were analysed for parasitological, hematological and biochemical parameters using standard techniques. Clinical monitoring of animals for side effects took place every 6 hours post treatment until autopsy. At autopsy free fluids and a large number of standard organs were collected, examined and tissues fixed in 10% buffered formalin and processed for standard haematoxylin-eosin staining and specific immunocytochemical staining. Results Mf counts dropped significantly (p<0.05) in all animals following ivermectin treatment with reductions as high as (89.9%) recorded; while no significant drop was observed in the control animals. Apart from haemoglobin (Hb) levels which recorded a significant (p = 0.028) drop post treatment, all other haematological and biochemical parameters did not show any significant changes (p>0.05). All animals became withdrawn 48 hours after IVM administration. All treated animals recorded clinical manifestations including rashes, itching, diarrhoea, conjunctival haemorrhages, lymph node enlargement, pinkish ears, swollen face and restlessness; one animal died 5 hours after IVM administration. Macroscopic changes in post-mortem tissues observed comprised haemorrhages in the brain, lungs, heart, which seen in all groups given ivermectin but not in the untreated animals. Microscopically, the major cellular changes seen, which were present in all the ivermectin treated animals included microfilariae in varying degrees of degeneration in small vessels. These were frequently associated with fibrin deposition, endothelial changes including damage to the integrity of the blood vessel and the presence of extravascular erythrocytes (haemorrhages). There was an increased presence of eosinophils and other chronic inflammatory types in certain tissues and organs, often in large numbers and associated with microfilarial destruction. Highly vascularized organs like the brain, heart, lungs and kidneys were observed to have more microfilariae in tissue sections. The number of mf seen in the brain and kidneys of animals administered IVM alone tripled that of control animals. Co-administration of IVM + PSE caused a greater increase in mf in the brain and kidneys while the reverse was noticed with the co-administration of IVM + ASA. Conclusions The treatment of Loa hyper-microfilaraemic individuals with ivermectin produces a clinical spectrum that parallels that seen in Loa hyper-microfilaraemic humans treated with ivermectin. The utilization of this experimental model can contribute to the improved management of the adverse responses in humans.
Trends in Parasitology | 2015
Che Julius Ngwa; Gabriele Pradel
The beneficial health effect of gut probiotics has been known since its discovery by Élie Metchnikoff. A new study has linked the microbiome of the human gut with immunity against malaria infections. Gut probiotics represent innovative tools for malaria prevention and lead the way to novel types of vaccination strategies.
Frontiers in Cellular and Infection Microbiology | 2017
Che Julius Ngwa; Meike J. Kiesow; Olga Papst; Lindsey M. Orchard; Michael Filarsky; Alina N. Rosinski; Till S. Voss; Manuel Llinás; Gabriele Pradel
Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1 expression mainly in the sexual stages of P. falciparum with peak expression in stage II gametocytes, where the protein localized to the nucleus and cytoplasm. Pfrnf1 promoter and coding regions associated with acetylated histones, and TSA-treatment resulted in increased PfRNF1 levels. Our combined data point to an essential role of histone acetylation for gene regulation in gametocytes, which can be exploited for malaria transmission-blocking interventions.
PLOS Pathogens | 2018
Sandra Bennink; Andreas von Bohl; Che Julius Ngwa; Leonie Henschel; Andrea Kuehn; Nicole Pilch; Tim Weißbach; Alina N. Rosinski; Matthias Scheuermayer; Urska Repnik; Jude M. Przyborski; Allen M. Minns; Lindsey M. Orchard; Gareth Griffiths; Scott E. Lindner; Manuel Llinás; Gabriele Pradel
The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.