Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Che-Ming J. Hu is active.

Publication


Featured researches published by Che-Ming J. Hu.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform

Che-Ming J. Hu; Li I. Zhang; Santosh Aryal; Connie Cheung; Ronnie H. Fang; Liangfang Zhang

Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization.


Biochemical Pharmacology | 2012

Nanoparticle-based combination therapy toward overcoming drug resistance in cancer

Che-Ming J. Hu; Liangfang Zhang

The use of multiple therapeutic agents in combination has become the primary strategy to treat drug resistant cancers. However, administration of combinatorial regimens is limited by the varying pharmacokinetics of different drugs, which results in inconsistent drug uptake and suboptimal drug combination at the tumor sites. Conventional combination strategies in aim to maximize therapeutic efficacy based on maximum tolerated dose does not account for the therapeutic synergism that is sensitive to both dosing and scheduling of multiple drugs. In the present review, we will discuss the development of multidrug-loaded nanoparticles against drug resistant cancers. Nanoparticle-based combination therapy against experimental multidrug resistant (MDR) cancer models will be summarized. In addition, we will highlight the recent advances in nanoparticle-based combination strategies against clinical cancer drug resistance, including co-encapsulation of drugs with different physicochemical properties, ratiometric control over drug loading, and temporal sequencing on drug release. These emerging strategies promise novel and better tailored combinatorial regimens for clinical cancer treatment.


Nature | 2015

Nanoparticle biointerfacing by platelet membrane cloaking

Che-Ming J. Hu; Ronnie H. Fang; Kuei-Chun Wang; Brian T. Luk; Soracha Thamphiwatana; Diana Dehaini; Phu Nguyen; Pavimol Angsantikul; Cindy Wen; Ashley V. Kroll; Cody W. Carpenter; Manikantan Ramesh; Vivian Qu; Sherrina Patel; Jie Zhu; William Shi; Florence M. Hofman; Thomas C. Chen; Weiwei Gao; Kang Zhang; Shu Chien; Liangfang Zhang

Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.


Angewandte Chemie | 2011

Micromachine-enabled capture and isolation of cancer cells in complex media.

Shankar Balasubramanian; Daniel Kagan; Che-Ming J. Hu; Susana Campuzano; M. Jesus Lobo‐Castañon; Nicole Lim; Dae Y. Kang; Maria Zimmerman; Liangfang Zhang; Joseph Wang

Circulating tumor cells (CTCs) are the primary entities responsible for spawning cancer metastasis. Detection of CTCs provides an indicator for the clinical diagnosis and prognosis of various types of cancers. Several approaches, based primarily on flowing the sample through antibody-coated magnetic-beads[1] or microchip[2,3] surfaces have been described for isolating and counting CTCs. However, these approaches require extensive sample preparation and/or complex surface microstructures to detect the extremely low abundance of CTCs in blood.[3,4] In this study we describe a immunomicromachine-based approach for an in-vitro isolation of cancer cells that holds promise for direct CTC detection without sample pre-processing.


Nano Letters | 2014

Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery

Ronnie H. Fang; Che-Ming J. Hu; Brian T. Luk; Weiwei Gao; Jonathan A. Copp; Yiyin Tai; Derek E. O’Connor; Liangfang Zhang

Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic information. Herein, we report on the biological functionalization of polymeric nanoparticles with a layer of membrane coating derived from cancer cells. The resulting core–shell nanostructures, which carry the full array of cancer cell membrane antigens, offer a robust platform with applicability toward multiple modes of anticancer therapy. We demonstrate that by coupling the particles with an immunological adjuvant, the resulting formulation can be used to promote a tumor-specific immune response for use in vaccine applications. Moreover, we show that by taking advantage of the inherent homotypic binding phenomenon frequently observed among tumor cells the membrane functionalization allows for a unique cancer targeting strategy that can be utilized for drug delivery applications.


Nature Nanotechnology | 2013

A biomimetic nanosponge that absorbs pore-forming toxins

Che-Ming J. Hu; Ronnie H. Fang; Jonathan A. Copp; Brian T. Luk; Liangfang Zhang

Detoxification treatments such as toxin-targeted anti-virulence therapy1, 2 offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries, and biological weaponry. Because existing detoxification platforms such as antisera3, monoclonal antibodies4, small-molecule inhibitors5, 6, and molecularly imprinted polymers7 act by targeting the molecular structures of the toxins, customized treatments are required for different diseases. Here we show a biomimetic toxin nanosponge that functions as a toxin decoy in vivo. The nanosponge, which consists of a polymeric nanoparticle core surrounded by red blood cell membranes, absorbs membrane-damaging toxins and diverts them away from their cellular targets. In a mouse model, the nanosponges markedly reduce the toxicity of staphylococcal alpha-hemolysin (α-toxin) and thus improve the survival rate of toxin-challenged mice. This biologically inspired toxin nanosponge presents a detoxification treatment that can potentially treat a variety of injuries and diseases caused by pore-forming toxins.


Nature Nanotechnology | 2013

Nanoparticle-detained toxins for safe and effective vaccination

Che-Ming J. Hu; Ronnie H. Fang; Brian T. Luk; Liangfang Zhang

Toxoid vaccines—vaccines based on inactivated bacterial toxins— are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections1–4. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major challenge and presents a trade-off between efficacy and safety in toxoid development. Here we show a nanoparticle-based toxin-detainment strategy that safely delivers non-disrupted pore-forming toxins for immune processing. Using erythrocyte membrane-coated nanoparticles and staphylococcal α-haemolysin, we demonstrate effective virulence neutralization via spontaneous particle entrapment. As compared to vaccination with heat-denatured toxin, mice vaccinated with the nanoparticle-detained toxin showed superior protective immunity against toxin adverse effects. We find that the non-disruptive detoxification approach benefited the immunogenicity and efficacy of toxoid vaccines. We anticipate the reported study to open new possibilities in the preparation of antitoxin vaccines against the many virulence factors that threaten public health.


Current Drug Metabolism | 2009

Therapeutic Nanoparticles to Combat Cancer Drug Resistance

Che-Ming J. Hu; Liangfang Zhang

This review focuses on the application of drug-loaded nanoparticles (NPs), also called therapeutic NPs, to combat cancer chemoresistance. Many cancer patients have encouraging response to first line chemotherapies but end up with cancer progression or cancer recurrence that requires further treatment. Response to subsequent chemotherapies with various agents usually drops significantly due to formidable cancer chemoresistance. A number of mechanisms have been postulated to account for cancer chemoresistance or poor response to chemotherapy. The best studied mechanism of resistance is mediated through the alteration in the drug efflux proteins responsible for the removal of many commonly used anticancer drugs. Therapeutic NPs have emerged as an innovative and promising alternative of the conventional small molecule chemotherapies to combat cancer drug resistance and have shown enhanced therapeutic efficacy and reduced adverse side effects as compared to their small molecule counterparts. Here the possible mechanisms of therapeutic NPs to combat cancer chemoresistance are reviewed, including prolonging drug systemic circulation lifetime, targeted drug delivery, stimuli-responsive drug release, endocytic uptake of drugs and co-delivering chemo-sensitizing agents. We also call attention to the current challenges and needs of developing therapeutic NPs to combat cancer drug resistance.


Advanced Materials | 2013

Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes

Weiwei Gao; Che-Ming J. Hu; Ronnie H. Fang; Brian T. Luk; Jing Su; Liangfang Zhang

Gold nanoparticles are enclosed in cellular membranes derived from natural red blood cells (RBCs) by a top-down approach. The gold nanoparticles exhibit a complete membrane surface layer and biological characteristics of the source cells. The combination of inorganic gold nanoparticles with biological membranes is a compelling way to develop biomimetic gold nanostructures for future applications, such as those requiring evasion of the immune system.


Nano Letters | 2015

Modulating Antibacterial Immunity via Bacterial Membrane-Coated Nanoparticles

Weiwei Gao; Ronnie H. Fang; Soracha Thamphiwatana; Brian T. Luk; Jieming Li; Pavimol Angsantikul; Qiangzhe Zhang; Che-Ming J. Hu; Liangfang Zhang

Synthetic nanoparticles coated with cellular membranes have been increasingly explored to harness natural cell functions toward the development of novel therapeutic strategies. Herein, we report on a unique bacterial membrane-coated nanoparticle system as a new and exciting antibacterial vaccine. Using Escherichia coli as a model pathogen, we collect bacterial outer membrane vesicles (OMVs) and successfully coat them onto small gold nanoparticles (AuNPs) with a diameter of 30 nm. The resulting bacterial membrane-coated AuNPs (BM-AuNPs) show markedly enhanced stability in biological buffer solutions. When injected subcutaneously, the BM-AuNPs induce rapid activation and maturation of dendritic cells in the lymph nodes of the vaccinated mice. In addition, vaccination with BM-AuNPs generates antibody responses that are durable and of higher avidity than those elicited by OMVs only. The BM-AuNPs also induce an elevated production of interferon gamma (INFγ) and interleukin-17 (IL-17), but not interleukin-4 (IL-4), indicating its capability of generating strong Th1 and Th17 biased cell responses against the source bacteria. These observed results demonstrate that using natural bacterial membranes to coat synthetic nanoparticles holds great promise for designing effective antibacterial vaccines.

Collaboration


Dive into the Che-Ming J. Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronnie H. Fang

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian T. Luk

University of California

View shared research outputs
Top Co-Authors

Avatar

Weiwei Gao

University of California

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Copp

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui-Wen Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Diana Dehaini

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zih-Syun Fang

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge