Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chee Keong Kwoh is active.

Publication


Featured researches published by Chee Keong Kwoh.


BMC Genomics | 2010

Computational approaches for detecting protein complexes from protein interaction networks: a survey

Xiaoli Li; Min Wu; Chee Keong Kwoh; See-Kiong Ng

BackgroundMost proteins form macromolecular complexes to perform their biological functions. However, experimentally determined protein complex data, especially of those involving more than two protein partners, are relatively limited in the current state-of-the-art high-throughput experimental techniques. Nevertheless, many techniques (such as yeast-two-hybrid) have enabled systematic screening of pairwise protein-protein interactions en masse. Thus computational approaches for detecting protein complexes from protein interaction data are useful complements to the limited experimental methods. They can be used together with the experimental methods for mapping the interactions of proteins to understand how different proteins are organized into higher-level substructures to perform various cellular functions.ResultsGiven the abundance of pairwise protein interaction data from high-throughput genome-wide experimental screenings, a protein interaction network can be constructed from protein interaction data by considering individual proteins as the nodes, and the existence of a physical interaction between a pair of proteins as a link. This binary protein interaction graph can then be used for detecting protein complexes using graph clustering techniques. In this paper, we review and evaluate the state-of-the-art techniques for computational detection of protein complexes, and discuss some promising research directions in this field.ConclusionsExperimental results with yeast protein interaction data show that the interaction subgraphs discovered by various computational methods matched well with actual protein complexes. In addition, the computational approaches have also improved in performance over the years. Further improvements could be achieved if the quality of the underlying protein interaction data can be considered adequately to minimize the undesirable effects from the irrelevant and noisy sources, and the various biological evidences can be better incorporated into the detection process to maximize the exploitation of the increasing wealth of biological knowledge available.


Genome Research | 2014

The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes

Ai Ling Teh; Hong Pan; Li Chen; Mei-Lyn Ong; Shaillay Dogra; Johnny Wong; Julia L. MacIsaac; Sarah M. Mah; Lisa M. McEwen; Seang-Mei Saw; Keith M. Godfrey; Yap Seng Chong; Kenneth Kwek; Chee Keong Kwoh; Shu-E Soh; Mary Foong-Fong Chong; Sheila J. Barton; Neerja Karnani; Clara Yujing Cheong; Jan Paul Buschdorf; Walter Stünkel; Michael S. Kobor; Michael J. Meaney; Peter D. Gluckman; Joanna D. Holbrook

Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the complex interactions of inherited and environmental components that define the developmental origins of a range of disorders. The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment. Accordingly, neonate methylomes contain molecular memory of the individual in utero experience. However, interindividual variation in methylation can also be a consequence of DNA sequence polymorphisms that result in methylation quantitative trait loci (methQTLs) and, potentially, the interaction between fixed genetic variation and environmental influences. We surveyed the genotypes and DNA methylomes of 237 neonates and found 1423 punctuate regions of the methylome that were highly variable across individuals, termed variably methylated regions (VMRs), against a backdrop of homogeneity. MethQTLs were readily detected in neonatal methylomes, and genotype alone best explained ∼25% of the VMRs. We found that the best explanation for 75% of VMRs was the interaction of genotype with different in utero environments, including maternal smoking, maternal depression, maternal BMI, infant birth weight, gestational age, and birth order. Our study sheds new light on the complex relationship between biological inheritance as represented by genotype and individual prenatal experience and suggests the importance of considering both fixed genetic variation and environmental factors in interpreting epigenetic variation.


Journal of Computational Chemistry | 2013

CovalentDock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints

Xuchang Ouyang; Shuo Zhou; Chinh Tran To Su; Zemei Ge; Runtao Li; Chee Keong Kwoh

Covalent linkage formation is a very important mechanism for many covalent drugs to work. However, partly due to the limitations of proper computational tools for covalent docking, most covalent drugs are not discovered systematically. In this article, we present a new covalent docking package, the CovalentDock, built on the top of the source code of Autodock. We developed an empirical model of free energy change estimation for covalent linkage formation, which is compatible with existing scoring functions used in docking, while handling the molecular geometry constrains of the covalent linkage with special atom types and directional grid maps. Integrated preparation scripts are also written for the automation of the whole covalent docking workflow. The result tested on existing crystal structures with covalent linkage shows that CovalentDock can reproduce the native covalent complexes with significant improved accuracy when compared with the default covalent docking method in Autodock. Experiments also suggest that CovalentDock is capable of covalent virtual screening with satisfactory enrichment performance. In addition, the investigation on the results also shows that the chirality and target selectivity along with the molecular geometry constrains are well preserved by CovalentDock, showing great capability of this method in the application for covalent drug discovery.


PLOS ONE | 2011

Inferring gene-phenotype associations via global protein complex network propagation.

Peng Yang; Xiaoli Li; Min Wu; Chee Keong Kwoh; See-Kiong Ng

Background Phenotypically similar diseases have been found to be caused by functionally related genes, suggesting a modular organization of the genetic landscape of human diseases that mirrors the modularity observed in biological interaction networks. Protein complexes, as molecular machines that integrate multiple gene products to perform biological functions, express the underlying modular organization of protein-protein interaction networks. As such, protein complexes can be useful for interrogating the networks of phenome and interactome to elucidate gene-phenotype associations of diseases. Methodology/Principal Findings We proposed a technique called RWPCN (Random Walker on Protein Complex Network) for predicting and prioritizing disease genes. The basis of RWPCN is a protein complex network constructed using existing human protein complexes and protein interaction network. To prioritize candidate disease genes for the query disease phenotypes, we compute the associations between the protein complexes and the query phenotypes in their respective protein complex and phenotype networks. We tested RWPCN on predicting gene-phenotype associations using leave-one-out cross-validation; our method was observed to outperform existing approaches. We also applied RWPCN to predict novel disease genes for two representative diseases, namely, Breast Cancer and Diabetes. Conclusions/Significance Guilt-by-association prediction and prioritization of disease genes can be enhanced by fully exploiting the underlying modular organizations of both the disease phenome and the protein interactome. Our RWPCN uses a novel protein complex network as a basis for interrogating the human phenome-interactome network. As the protein complex network can capture the underlying modularity in the biological interaction networks better than simple protein interaction networks, RWPCN was found to be able to detect and prioritize disease genes better than traditional approaches that used only protein-phenotype associations.


IEEE Transactions on Evolutionary Computation | 2010

Feasibility Structure Modeling: An Effective Chaperone for Constrained Memetic Algorithms

Stephanus Daniel Handoko; Chee Keong Kwoh; Yew-Soon Ong

An important issue in designing memetic algorithms (MAs) is the choice of solutions in the population for local refinements, which becomes particularly crucial when solving computationally expensive problems. With single evaluation of the objective/constraint functions necessitating tremendous computational power and time, it is highly desirable to be able to focus search efforts on the regions where the global optimum is potentially located so as not to waste too many function evaluations. For constrained optimization, the global optimum must either be located at the trough of some feasible basin or some particular point along the feasibility boundary. Presented in this paper is an instance of optinformatics where a new concept of modeling the feasibility structure of inequality-constrained optimization problems-dubbed the feasibility structure modeling-is proposed to perform geometrical predictions of the locations of candidate solutions in the solution space: deep inside any infeasible region, nearby any feasibility boundary, or deep inside any feasible region. This knowledge may be unknown prior to executing an MA but it can be mined as the search for the global optimum progresses. As more solutions are generated and subsequently stored in the database, the feasibility structure can thus be approximated more accurately. As an integral part, a new paradigm of incorporating the classification-rather than the regression-into the framework of MAs is introduced, allowing the MAs to estimate the feasibility boundary such that effective assessments of whether or not the candidate solutions should experience local refinements can be made. This eventually helps preventing the unnecessary refinements and consequently reducing the number of function evaluations required to reach the global optimum.


Briefings in Bioinformatics | 2013

Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance

Kian Guan Lim; Chee Keong Kwoh; Li Yang Hsu; Adrianto Wirawan

The prevalence of tandem repeats in eukaryotic genomes and their association with a number of genetic diseases has raised considerable interest in locating these repeats. Over the last 10-15 years, numerous tools have been developed for searching tandem repeats, but differences in the search algorithms adopted and difficulties with parameter settings have confounded many users resulting in widely varying results. In this review, we have systematically separated the algorithmic aspect of the search tools from the influence of the parameter settings. We hope that this will give a better understanding of how the tools differ in algorithmic performance, their inherent constraints and how one should approach in evaluating and selecting them.


Bioinformatics | 2012

Positive-unlabeled learning for disease gene identification

Peng Yang; Xiaoli Li; Jian-Ping Mei; Chee Keong Kwoh; See-Kiong Ng

Background: Identifying disease genes from human genome is an important but challenging task in biomedical research. Machine learning methods can be applied to discover new disease genes based on the known ones. Existing machine learning methods typically use the known disease genes as the positive training set P and the unknown genes as the negative training set N (non-disease gene set does not exist) to build classifiers to identify new disease genes from the unknown genes. However, such kind of classifiers is actually built from a noisy negative set N as there can be unknown disease genes in N itself. As a result, the classifiers do not perform as well as they could be. Result: Instead of treating the unknown genes as negative examples in N, we treat them as an unlabeled set U. We design a novel positive-unlabeled (PU) learning algorithm PUDI (PU learning for disease gene identification) to build a classifier using P and U. We first partition U into four sets, namely, reliable negative set RN, likely positive set LP, likely negative set LN and weak negative set WN. The weighted support vector machines are then used to build a multi-level classifier based on the four training sets and positive training set P to identify disease genes. Our experimental results demonstrate that our proposed PUDI algorithm outperformed the existing methods significantly. Conclusion: The proposed PUDI algorithm is able to identify disease genes more accurately by treating the unknown data more appropriately as unlabeled set U instead of negative set N. Given that many machine learning problems in biomedical research do involve positive and unlabeled data instead of negative data, it is possible that the machine learning methods for these problems can be further improved by adopting PU learning methods, as we have done here for disease gene identification. Availability and implementation: The executable program and data are available at http://www1.i2r.a-star.edu.sg/∼xlli/PUDI/PUDI.html. Contact: [email protected] or [email protected] Supplementary information: Supplementary Data are available at Bioinformatics online.


international conference on artificial immune systems | 2005

Applying the clonal selection principle to find flexible job-shop schedules

Z. X. Ong; Joc Cing Tay; Chee Keong Kwoh

We apply the Clonal Selection principle of the human immune system to solve the Flexible Job-Shop Problem with recirculation. Various practical design issues are addressed in the implemented algorithm, ClonaFLEX; first, an efficient antibody representation which creates only feasible solutions and a bootstrapping antibody initialization method to reduce the search time required. Second, the assignment of suitable mutation rates for antibodies based on their affinity. To this end, a simple yet effective visual method of determining the optimal mutation value is proposed. And third, to prevent premature convergence, a novel way of using elite pools to incubate antibodies is presented. Performance results of ClonaFLEX are obtained against benchmark FJSP instances by Kacem and Brandimarte. On average, ClonaFLEX outperforms a cultural evolutionary algorithm (EA) in 7 out of 12 problem sets, equivalent results for 4 and poorer in 1.


Reliability Engineering & System Safety | 2001

The safety issues of medical robotics

Baowei Fei; Wan Sing Ng; Sunita Chauhan; Chee Keong Kwoh

Abstract In this paper, we put forward a systematic method to analyze, control and evaluate the safety issues of medical robotics. We created a safety model that consists of three axes to analyze safety factors. Software and hardware are the two material axes. The third axis is the policy that controls all phases of design, production, testing and application of the robot system. The policy was defined as hazard identification and safety insurance control (HISIC) that includes seven principles: definitions and requirements, hazard identification, safety insurance control, safety critical limits, monitoring and control, verification and validation, system log and documentation. HISIC was implemented in the development of a robot for urological applications that was known as URObot. The URObot is a universal robot with different modules adaptable for 3D ultrasound image-guided interstitial laser coagulation, radiation seed implantation, laser resection, and electrical resection of the prostate. Safety was always the key issue in the building of the robot. The HISIC strategies were adopted for safety enhancement in mechanical, electrical and software design. The initial test on URObot showed that HISIC had the potential ability to improve the safety of the system. Further safety experiments are being conducted in our laboratory.


Nucleic Acids Research | 2012

Quantitative model of R-loop forming structures reveals a novel level of RNA–DNA interactome complexity

Thidathip Wongsurawat; Piroon Jenjaroenpun; Chee Keong Kwoh; Vladimir L. Kuznetsov

R-loop is the structure co-transcriptionally formed between nascent RNA transcript and DNA template, leaving the non-transcribed DNA strand unpaired. This structure can be involved in the hyper-mutation and dsDNA breaks in mammalian immunoglobulin (Ig) genes, oncogenes and neurodegenerative disease related genes. R-loops have not been studied at the genome scale yet. To identify the R-loops, we developed a computational algorithm and mapped R-loop forming sequences (RLFS) onto 66 803 sequences defined by UCSC as ‘known’ genes. We found that ∼59% of these transcribed sequences contain at least one RLFS. We created R-loopDB (http://rloop.bii.a-star.edu.sg/), the database that collects all RLFS identified within over half of the human genes and links to the UCSC Genome Browser for information integration and visualisation across a variety of bioinformatics sources. We found that many oncogenes and tumour suppressors (e.g. Tp53, BRCA1, BRCA2, Kras and Ptprd) and neurodegenerative diseases related genes (e.g. ATM, Park2, Ptprd and GLDC) could be prone to significant R-loop formation. Our findings suggest that R-loops provide a novel level of RNA–DNA interactome complexity, playing key roles in gene expression controls, mutagenesis, recombination process, chromosomal rearrangement, alternative splicing, DNA-editing and epigenetic modifications. RLFSs could be used as a novel source of prospective therapeutic targets.

Collaboration


Dive into the Chee Keong Kwoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wan Sing Ng

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Zheng

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Peng Yang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Stephanus Daniel Handoko

Singapore Management University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Limsoon Wong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrianto Wirawan

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge