Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheen Euong Ang is active.

Publication


Featured researches published by Cheen Euong Ang.


Stem cell reports | 2014

Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

Soham Chanda; Cheen Euong Ang; Jonathan Davila; ChangHui Pak; Moritz Mall; Qian Yi Lee; Henrik Ahlenius; Seung Woo Jung; Thomas C. Südhof; Marius Wernig

Summary Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs) into mature induced neuronal (iN) cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN) expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.


Nature | 2015

The histone chaperone CAF-1 safeguards somatic cell identity

Sihem Cheloufi; Ulrich Elling; Barbara Hopfgartner; Youngsook L. Jung; Jernej Murn; Maria Ninova; Maria Hubmann; Aimee I. Badeaux; Cheen Euong Ang; Danielle Tenen; Daniel J. Wesche; Nadezhda Abazova; Max Hogue; Nilgun Tasdemir; Justin Brumbaugh; Philipp Rathert; Julian Jude; Francesco Ferrari; Andres Blanco; Michaela Fellner; Daniel Wenzel; Marietta Zinner; Simon E. Vidal; Oliver Bell; Matthias Stadtfeld; Howard Y. Chang; Geneviève Almouzni; Scott W. Lowe; John L. Rinn; Marius Wernig

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.


Cell Stem Cell | 2015

Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis

Michael S. Kareta; Laura L. Gorges; Sana Hafeez; Bérénice A. Benayoun; Samuele Marro; Anne-Flore Zmoos; Matthew J. Cecchini; Damek V. Spacek; Luis F.Z. Batista; Megan O’Brien; Yi-Han Ng; Cheen Euong Ang; Dedeepya Vaka; Steven E. Artandi; Frederick A. Dick; Anne Brunet; Julien Sage; Marius Wernig

Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function.


Nature | 2017

Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates

Moritz Mall; Michael S. Kareta; Soham Chanda; Henrik Ahlenius; Nicholas Perotti; Bo Zhou; Sarah Grieder; Xuecai Ge; Sienna Drake; Cheen Euong Ang; Brandon M. Walker; Thomas Vierbuchen; Daniel R. Fuentes; Philip Brennecke; Kazuhiro R. Nitta; Arttu Jolma; Lars M. Steinmetz; Jussi Taipale; Thomas C. Südhof; Marius Wernig

Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar ‘many-but-one’ lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.


Nature Methods | 2017

Generation of pure GABAergic neurons by transcription factor programming

Nan Yang; Soham Chanda; Samuele Marro; Yi-Han Ng; Justyna A. Janas; Daniel Haag; Cheen Euong Ang; Yunshuo Tang; Quetzal Flores; Moritz Mall; Orly L. Wapinski; Mavis Li; Henrik Ahlenius; John L.R. Rubenstein; Howard Y. Chang; Arturo Alvarez Buylla; Thomas C. Südhof; Marius Wernig

Approaches to differentiating pluripotent stem cells (PSCs) into neurons currently face two major challenges—(i) generated cells are immature, with limited functional properties; and (ii) cultures exhibit heterogeneous neuronal subtypes and maturation stages. Using lineage-determining transcription factors, we previously developed a single-step method to generate glutamatergic neurons from human PSCs. Here, we show that transient expression of the transcription factors Ascl1 and Dlx2 (AD) induces the generation of exclusively GABAergic neurons from human PSCs with a high degree of synaptic maturation. These AD-induced neuronal (iN) cells represent largely nonoverlapping populations of GABAergic neurons that express various subtype-specific markers. We further used AD-iN cells to establish that human collybistin, the loss of gene function of which causes severe encephalopathy, is required for inhibitory synaptic function. The generation of defined populations of functionally mature human GABAergic neurons represents an important step toward enabling the study of diseases affecting inhibitory synaptic transmission.


The Journal of Comparative Neurology | 2014

Induced neuronal reprogramming

Cheen Euong Ang; Marius Wernig

Cellular differentiation processes during normal embryonic development are guided by extracellular soluble factors such as morphogen gradients and cell contact signals, eventually resulting in induction of specific combinations of lineage‐determining transcription factors. The young field of epigenetic reprogramming takes advantage of this knowledge and uses cell fate determination factors to convert one lineage into another such as the conversion of fibroblasts into pluripotent stem cells or neurons. These induced cell fate conversions open up new avenues for studying disease processes, generating cell material for therapeutic intervention such as drug screening and potentially also for cell‐based therapies. However, there are still limitations that have to be overcome to fulfill these promises, centering on reprogramming efficiencies, cell identity, and maturation. In this review, we discuss the discovery of induced neuronal reprogramming, ways to improve the conversion process, and finally how to define properly the identity of those converted neuronal cells. J. Comp. Neurol. 522:2877–2886, 2014.


Journal of Neuroscience Methods | 2013

Acute reduction in oxygen tension enhances the induction of neurons from human fibroblasts

Jonathan Davila; Soham Chanda; Cheen Euong Ang; Thomas C. Südhof; Marius Wernig

We and others have reported the successful conversion of human fibroblasts into functional induced neuronal (iN) cells; however the reprogramming efficiencies were very low. Robust reprogramming methods must be developed before iN cells can be used for translational applications such as disease modeling or transplantation-based therapies. Here, we describe a novel approach in which we significantly enhance iN cell conversion efficiency of human fibroblast cells by reprogramming under hypoxic conditions (5% O₂). Fibroblasts were derived under high (21%) or low (5%) oxygen conditions and reprogrammed into iN cells using a combination of the four transcription factors BRN2, ASCL1, MYT1L and NEUROD1. An increase in Map2 immunostaining was only observed when fibroblasts experienced an acute drop in O₂ tension upon infection. Interestingly, cells derived and reprogrammed under hypoxic conditions did not produce more iN cells. Approximately 100% of patched cells fired action potentials in low O₂ conditions compared to 50% under high O₂ growth conditions, confirming the beneficial aspect of reprogramming under low O₂. Further characterization showed no significant difference in the intrinsic properties of iN cells reprogrammed in either condition. Surprisingly, the acute drop in oxygen tension did not affect cell proliferation or cell survival and was not synergistic with the blockade of GSK3β and Smad-mediated pathways. Our results showed that lowering the O₂ tension at the initiation of reprogramming is a simple and efficient strategy to enhance the production of iN cells which will facilitate their use for basic discovery and regenerative medicine.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Transdifferentiation of human adult peripheral blood T cells into neurons

Koji Tanabe; Cheen Euong Ang; Soham Chanda; Victor Hipolito Olmos; Daniel Haag; Douglas F. Levinson; Thomas C. Südhof; Marius Wernig

Significance Recent advances in genomics have revealed that many polygenetic diseases are caused by complex combinations of many common variants with individually small effects. Thus, building informative disease models requires the interrogation of many patient-derived genetic backgrounds in a disease-relevant cell type. Current approaches to obtaining human neurons are not easy to scale to many patients. Here we describe a facile, one-step conversion of human adult peripheral blood T cells directly into functional neurons using episomal vectors without the need for previous in vitro expansion. This approach is more amenable than induced pluripotent stem cell-based approaches for application to larger cohorts of individuals and will enable the development of functional assays to study complex human brain diseases. Human cell models for disease based on induced pluripotent stem (iPS) cells have proven to be powerful new assets for investigating disease mechanisms. New insights have been obtained studying single mutations using isogenic controls generated by gene targeting. Modeling complex, multigenetic traits using patient-derived iPS cells is much more challenging due to line-to-line variability and technical limitations of scaling to dozens or more patients. Induced neuronal (iN) cells reprogrammed directly from dermal fibroblasts or urinary epithelia could be obtained from many donors, but such donor cells are heterogeneous, show interindividual variability, and must be extensively expanded, which can introduce random mutations. Moreover, derivation of dermal fibroblasts requires invasive biopsies. Here we show that human adult peripheral blood mononuclear cells, as well as defined purified T lymphocytes, can be directly converted into fully functional iN cells, demonstrating that terminally differentiated human cells can be efficiently transdifferentiated into a distantly related lineage. T cell-derived iN cells, generated by nonintegrating gene delivery, showed stereotypical neuronal morphologies and expressed multiple pan-neuronal markers, fired action potentials, and were able to form functional synapses. These cells were stable in the absence of exogenous reprogramming factors. Small molecule addition and optimized culture systems have yielded conversion efficiencies of up to 6.2%, resulting in the generation of >50,000 iN cells from 1 mL of peripheral blood in a single step without the need for initial expansion. Thus, our method allows the generation of sufficient neurons for experimental interrogation from a defined, homogeneous, and readily accessible donor cell population.


bioRxiv | 2018

The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders

Cheen Euong Ang; Qing Ma; Orly L. Wapinski; ShengHua Fan; Ryan A. Flynn; Bradley P. Coe; Masahiro Onoguchi; Victor Hipolito Olmos; Brian T. Do; Lynn Dukes-Rimsky; Jin Xu; Qian Yi Lee; Koji Tanabe; Liangjiang Wang; Ulrich Elling; Josef M. Penninger; Kun Qu; Evan E. Eichler; Anand K. Srivastava; Marius Wernig; Howard Y. Chang

Long noncoding RNAs (lncRNAs) have been shown to act as important cell biological regulators including cell fate decisions but are often ignored in human genetics. Combining differential lncRNA expression during neuronal lineage induction with copy number variation morbidity maps of a cohort of children with autism spectrum disorder/intellectual disability versus healthy controls revealed focal genomic mutations affecting several lncRNA candidate loci. Here we find that a t(5:12) chromosomal translocation in a family manifesting neurodevelopmental symptoms disrupts specifically lnc-NR2F1. We further show that lnc-NR2F1 is an evolutionarily conserved lncRNA functionally enhances induced neuronal cell maturation and directly occupies and regulates transcription of neuronal genes including autism-associated genes. Thus, integrating human genetics and functional testing in neuronal lineage induction is a promising approach for discovering candidate lncRNAs involved in neurodevelopmental diseases.


bioRxiv | 2018

Old fibroblasts secrete inflammatory cytokines that drive variability in reprogramming efficiency and may affect wound healing between old individuals

Salah Mahmoudi; Elena Mancini; Alessandra L. Moore; Lucy Xu; Fereshteh Jahanbani; Katja Hebestreit; Rajini Srinivasan; Xiyan Li; Keerthana Devarajan; Laurie Prelot; Cheen Euong Ang; Yohei Shibuya; Bérénice A. Benayoun; Anne Lynn S. Chang; Marius Wernig; Joanna Wysocka; Michael T. Longaker; Michael Snyder; Anne Brunet

Age-associated chronic inflammation (inflammaging) has emerged as a central hallmark of aging1-3, but its impact on specific cells is still largely unknown. Fibroblasts are present in all tissues and contribute to wound healing4-6. They are also the cell type that is mostly used for induced pluripotent stem cell (iPSC) reprogramming7 – a process that has implications for regenerative medicine and rejuvenation strategies8-17. Here we show that primary fibroblasts from old mice secrete inflammatory cytokines and that there is an increased variability in reprogramming efficiency between fibroblast cultures from old individuals. Individual-to-individual variability is emerging as a key feature of old age18-21, which could reflect distinct aging trajectories, but the underlying causes remain unknown. To identify drivers of this variability, we perform a multi-omic assessment of young and old fibroblast cultures with different reprogramming efficiency. This approach, coupled with single cell transcriptomics, reveals that old fibroblast cultures are heterogeneous and show a greater proportion of ‘activated fibroblasts’ that secrete inflammatory cytokines, which correlates with reprogramming efficiency. We experimentally validate that activated fibroblasts express inflammatory cytokines in vivo and that their presence is linked to enhanced reprogramming efficiency in culture. Conditioned-media swapping experiments show that extrinsic factors secreted by activated fibroblasts are more critical than intrinsic factors for the individual-to-individual variability in reprogramming efficiency, and we identify TNFα as a key inflammatory cytokine underlying this variability. Interestingly, old mice also exhibit variability in wound healing efficiency in vivo and old wounds show an increased subpopulation of activated fibroblasts with a unique TNFα signature. Our study shows that a switch in fibroblast composition, and the ratio of inflammatory cytokines they secrete, drives variability in reprogramming in vitro and may influence wound healing in vivo. These findings could help identify personalized strategies to improve iPSC generation and wound healing in older individuals.

Collaboration


Dive into the Cheen Euong Ang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge