Cheikh Fall
Universidad Autónoma del Estado de México
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheikh Fall.
Journal of Environmental Management | 2012
E. Gutiérrez-Segura; M. Solache-Ríos; Arturo Colín-Cruz; Cheikh Fall
In the present study the process of adsorption of cadmium from aqueous solutions using Na-zeolitic tuff, Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge treated with HCl was investigated. The cadmium removal efficiency was studied as a function of contact time, adsorbate concentration, pH and adsorbent dose. The results showed that removal of cadmium was best described by the Langmuir-Freundlich isotherm. The kinetic experimental results were best described by the pseudo-first order model. The results indicate that the adsorption mechanism is physical and chemical sorption on heterogeneous materials. The maximum retention of cadmium was at pH around 6.0 for the materials. In kinetic studies, the Na and Fe modified zeolitic tuffs showed similar sorption capacities for cadmium and they were higher than the capacity found for carbonaceous material.
Journal of Environmental Management | 2013
M.J. Jiménez-Cedillo; M.T. Olguín; Cheikh Fall; Arturo Colín-Cruz
The sorption of As(III) and As(V) from aqueous solutions onto iron-modified Petroselinum crispum (PCFe) and iron-modified carbonaceous material from the pyrolysis of P. crispum (PCTTFe) was investigated. The modified sorbents were characterized with scanning electron microscopy. The sorbent elemental composition was determined with energy-dispersive X-ray spectroscopy (EDS). The principal functional groups from the sorbents were determined with FT-IR. The specific surfaces and points of zero charge (pzc) of the materials were also determined. As(III) and As(V) sorption onto the modified sorbents were performed in a batch system. After the sorption process, the As content in the liquid and solid phases was determined with atomic absorption and neutron activation analyses, respectively. After the arsenic sorption processes, the desorption of Fe from PCFe and PCTTFe was verified with atomic absorption spectrometry. The morphology of PC changed after iron modification. The specific area and pzc differed significantly between the iron-modified non-pyrolyzed and pyrolyzed P. crispum. The kinetics of the arsenite and arsenate sorption processes were described with a pseudo-second-order model. The Langmuir-Freundlich model provided the isotherms with the best fit. Less than 0.02% of the Fe was desorbed from the PCFe and PCTTFe after the As(III) and As(V) sorption processes.
Environmental Technology | 2009
E. Gutiérrez-Segura; Arturo Colín-Cruz; Cheikh Fall; Marcos Solache-Ríos; Patricia Balderas-Hernández
The sorption behaviour of Cd and Pb from aqueous solutions in columns, using both commercial activated carbon and a carbonaceous material from pyrolysis of sewage sludge, was determined. The breakthrough data obtained for Cd and Pb sorption could be described by the linear form of the Thomas adsorption model. The breakthrough capacities found from column studies were different for each metal and the data reflect the order of metal affinity for the adsorbents materials. The adsorption capacity of the carbonaceous material was higher for cadmium than for lead in a single system and in binary systems, and, for activated carbon, the sorption capacities of lead and cadmium were similar in the binary system. The results indicated that the carbonaceous material from pyrolysis of sewage sludge is a better adsorbent than activated carbon of cadmium and lead.
Bioresource Technology | 2016
C.G. Martínez-García; Cheikh Fall; M.T. Olguín
This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks.
Bioresource Technology | 2014
Cheikh Fall; J.A. Rogel-Dorantes; E.L. Millán-Lagunas; C.G. Martínez-García; B.C. Silva-Hernández; F.S. Silva-Trejo
Long-term aerobic digestion batch tests were performed on a sludge that contained mainly two fractions, a heterotrophic biomass XH and its endogenous residues XP, which were cultivated in conditions known to favor bio-storage (XSto). The objective was to model the stabilization of the sludge and determine the parameters of the endogenous decay processes, based on simultaneous measurements of the chemical oxygen demand (COD) and oxygen uptake rates (OUR). The respirograms were shown to have a two-phase structure that was describable with activated sludge model 3 (ASM3), but not with ASM1. Comparing the information from the COD and OUR data suggested the presence of two different groups of heterotrophs (XHa and XHb), one that decays with oxygen consumption and another without using O2. A modified ASM3 model was proposed, which was able to fit the OUR and COD data from the digesters, as well as cases from the literature.
Water Science and Technology | 2009
H. Rubí; Cheikh Fall; R. E. Ortega
Wastewater from car washes represents a potential problem for the sewer system due to its emulsified oils and suspended material. Treatment of wastewater discharged from four car washes was investigated by sedimentation and coagulation. The effect of the coagulants Servical P (aluminium hydroxychloride), Servican 50 (poly(diallyldimethylammonium chloride)), aluminium sulfate and ferric chloride was evaluated. The achieved removal using sedimentation was of 82%, 88% 73% and 51% for oils, total suspended solids, COD, and turbidity, respectively. In the treatment by coagulation we achieved average efficiencies nearly to 74% for COD removal, greater than 88% in the case of total suspended solids removal and 92% in the case of turbidity and except the performance of Servican 50 greater than 90% in oil removal. We concluded that the oil residual concentration and COD in the treated water allows pouring it in the sewer system complying with the limits of the Mexican rule NOM-002-ECOL-1996 and it is possible even its reuse, at least in the case of the chassis washing of cars.
Bioresource Technology | 2014
C.G. Martínez-García; M.T. Olguín; Cheikh Fall
Aerobic digestion batch tests were run on a sludge model that contained only two fractions, the heterotrophic biomass (XH) and its endogenous residue (XP). The objective was to describe the stabilization of the sludge and estimate the endogenous decay parameters. Modeling was performed with Aquasim, based on long-term data of volatile suspended solids and chemical oxygen demand (VSS, COD). Sensitivity analyses were carried out to determine the conditions for unique identifiability of the parameters. Importantly, it was found that the COD/VSS ratio of the endogenous residues (1.06) was significantly lower than for the active biomass fraction (1.48). The decay rate constant of the studied sludge (low bH, 0.025 d(-1)) was one-tenth that usually observed (0.2d(-1)), which has two main practical significances. Digestion time required is much more long; also the oxygen uptake rate might be <1.5 mg O₂/gTSSh (biosolids standards), without there being significant decline in the biomass.
Journal of Environmental Management | 2012
Cheikh Fall; E. Millán-Lagunas; Khalidou M. Bâ; Iván Gallego-Alarcón; Daury García-Pulido; Carlos Díaz-Delgado; C. Solís-Morelos
This study was conducted at a centralized wastewater treatment plant that receives discharges from nearly 160 industries. The chemical oxygen demand (COD) was fractionated for two objectives: delineation of the limits of the activated sludge process being used at the plant, and evaluation of the potential environmental impact of the treated effluent. Physico-chemical analyses, respirometric and biodegradation tests, as well as COD fractionation were carried out. Molasses-wastewaters were determined to be the major contribution to the plant. The influent was dark brown in color, with a relatively high content of both organics (2503 mg/L COD) and salts (5459 μS/cm conductivity), but a low biochemical oxygen demand (568 mg/L BOD(5)) and BOD(5)/COD ratio (0.24). The degradability of the organics was limited by the high content of inert soluble COD (S(I)). The COD fractionation pattern was 40-20-40% for S(I), X(I) (inerts) and S(H) (soluble hydrolyzable), respectively. More than 90% BOD(5) removal was obtained, which was sufficient for the plant to meet the national Standards. However, the effluent discharged into the river was intensely colored and polluted (>1000 mg/L COD, >5000 μS/cm), emphasizing the need for legislation regulating COD, color and salinity, and for upgraded treatment methods worldwide for molasses wastewaters.
Water Air and Soil Pollution | 2012
E. Gutiérrez-Segura; Arturo Colín-Cruz; Marcos Solache-Ríos; Cheikh Fall
The adsorption behavior of denim blue from aqueous solutions in column systems, using both carbonaceous material and Fe-zeolitic tuff (Fe-Z), was determined. The breakthrough data obtained for denim blue adsorption were fitted to the empty-bed contact time, Bohart–Adams, Thomas, and Yoon–Nelson models. The parameters such as breakthrough and saturation times, bed volumes, kinetic constants, adsorption capacities, and adsorbent usage rates (AUR) were determined. The results show that the breakthrough time increases proportionally with increasing bed height, but it decreases as the kinetic constant increases. The adsorption capacity for denim blue for carbonaceous material was higher than Fe-Z. AUR was lower for carbonaceous material than Fe-Z. The results indicated that the carbonaceous material from pyrolysis of sewage sludge is a good adsorbent for denim blue removal.
Water Science and Technology | 2009
Cheikh Fall; J. Loaiza-Navia; Mario Esparza-Soto
As part of the efforts done to introduce the practice of modeling in Latin America, this research carried out at the North-East WWTP of Monterrey represents the first comprehensive modeling case in Mexico. The main objective was to reproduce the organic carbon removal and sludge production rates of the plant, based on ASM1. Different intermediate studies were performed prior to the calibration of the model: influent characterization, tracer tests and hydraulics modeling, sludge settling tests and respirometry. Two fractionation methods (STOWA protocol and Influent-advisor) were compared, showing no equivalent patterns. A stepwise sequence of calibration was developed and successfully applied. The hydraulics of the reactors at the plant was reproduced by use of a series of 3 to 5 CSTRs. The waste and return activated sludge flowrates (Q(WAS) and Q(RAS)) were corrected based on the inorganic and total suspended solids mass balances. The Vesilind settling constants were measured (V(o) and r(hind)), while the flocculent zone settling parameter (r(floc)) was adjusted to calibrate the secondary clarifier. In ASM1, the adjusted parameters were the COD soluble inert fraction (frS(I)) and the particulate substrate fraction (FrX(S)). All other ASM1 parameters were kept at their default values. The steady-state calibrated model (in GPS-X) adequately described the quality of the effluent (carbon and nitrogen) as well as the sludge composition (M. Liquor and WAS). This case study provides voluntarily detailed data to allow its wide use for training and teaching purposes.