Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chelladurai Karuppiah is active.

Publication


Featured researches published by Chelladurai Karuppiah.


Colloids and Surfaces B: Biointerfaces | 2014

Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode

Selvakumar Palanisamy; Chelladurai Karuppiah; Shen-Ming Chen

The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose.


Journal of Hazardous Materials | 2014

Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia

R. Emmanuel; Chelladurai Karuppiah; Shen-Ming Chen; Selvakumar Palanisamy; S. Padmavathy; P. Prakash

The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600μM with high sensitivity of 1.01μAμM(-1)cm(-2) and low limit of detection of 0.016μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples.


Analytical Methods | 2014

Electrochemical detection of 4-nitrophenol based on biomass derived activated carbons

Rajesh Madhu; Chelladurai Karuppiah; Shen-Ming Chen; Pitchaimani Veerakumar; Shang-Bin Liu

A novel method for detecting an environmental pollutant, 4-nitrophenol (4-NP), by exploiting biomass-derived activated carbon (AC) is reported. The electrochemical performances of the 4-NP sensor were assessed by cyclic and linear sweep voltammetries. The presence of oxygen surface functional groups and heteroatoms (72.6% C, 6.1% H, 6.5% N, and 7.5% S) in the biomass-derived AC with high surface area (1555 m2 g−1) are found to be responsible for the excellent catalytic activities and reversible redox behaviors observed during the detection of 4-NP. The effects of pH of the electrolyte buffer solution, accumulated potential and duration as well as the analyte concentration on the electrocatalytic performance of the sensor were investigated. Consequently, a linear correlation between the cathodic reduction peak current with 4-NP concentration up to 500 μM with a detection limit and sensitivity of 0.16 μM and 5.810 μA μM−1 cm−2, respectively, were observed over the AC-modified GCE in 0.05 M acetate buffer solution (pH 5.0), surpassing the existing modified electrodes in the literature. The facile 4-NP sensor thus implemented is also advantageous for its simplicity, stability, reliability, durability, and low cost, rendering practical applications for real sample systems.


RSC Advances | 2015

Green synthesized silver nanoparticles decorated on reduced graphene oxide for enhanced electrochemical sensing of nitrobenzene in waste water samples

Chelladurai Karuppiah; K. Muthupandi; Shen-Ming Chen; M. Ajmal Ali; Selvakumar Palanisamy; A. Rajan; P. Prakash; Fahad M.A. Al-Hemaid; Bih-Show Lou

In the present work, an electrochemical sensor for nitrobenzene (NB) has been developed based on a green synthesized silver nanoparticles (AgNPs) decorated reduced graphene oxide (RGO) modified glassy carbon electrode (GCE). The AgNPs were synthesized using Justicia glauca leaf extract as a reducing and stabilizing agent. A RGO–AgNPs composite modified electrode was prepared by a simple electrochemical reduction of AgNPs dispersed GO solution. FESEM of RGO–AgNPs composite confirms that AgNPs are firmly attached on the RGO sheets and the average size of AgNPs is found to be 40 ± 5 nm. The modified electrode shows good efficiency with lower overpotential for electrocatalytic reduction of NB than that of other modified electrodes (AgNPs and RGO). The DPV response confirms that the reduction peak current of NB is linear over the concentrations from 0.5 to 900 μM. The sensitivity of the sensors is found to be 0.836 μA μM−1 cm−2 with the detection limit of 0.261 μM for NB. In addition, the RGO–AgNPs composite modified electrode shows good selectivity in the presence of potentially interfering similar compounds and good practicality in the waste water samples.


ACS Applied Materials & Interfaces | 2016

Modern Approach to the Synthesis of Ni(OH)2 Decorated Sulfur Doped Carbon Nanoparticles for the Nonenzymatic Glucose Sensor

Natarajan Karikalan; Murugan Velmurugan; Shen-Ming Chen; Chelladurai Karuppiah

As a growing aspect of materials science, there are an enormous number of synthesis routes that have been identified to produce materials, particularly through simple methodologies. In this way, the present study focuses on the easiest way to prepare sulfur doped carbon nanoparticles (SDCNs) using a flame synthesis method and has also demonstrated a novel route to synthesize Ni(OH)2 decorated SDCNs by a simple adsorption cum precipitation method. The SDCNs are alternative candidates to prestigious carbon materials such as graphene, carbon nanotubes, and fullerenes. Moreover, SDCNs provide excellent support to the Ni(2+) ion adsorption and initiate the formation of Ni(OH)2. The formation of Ni(OH)2 on the SDCN matrix was confirmed by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), selected area diffraction pattern (SAED), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). After these meticulous structural evaluations, we have described the mechanism for the formation of Ni(OH)2 on an SDCN matrix. The as-prepared Ni(OH)2 decorated SDCN nanocomposites were used as an electrode material for nonenzymatic glucose sensors. The fabricated glucose sensor exhibited a wide linear concentration range, 0.0001-5.22 mM and 5.22-10.22 mM, and a low-level detection limit of 28 nM. Additionally, it reveals excellent selectivity in the potentially interfering ions and also possesses a good stability. The practicality of the fabricated glucose sensor was also demonstrated toward glucose detection in biological samples.


Mikrochimica Acta | 2015

Highly selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin

Rajkumar Devasenathipathy; Chelladurai Karuppiah; Shen-Ming Chen; Veerappan Mani; Vairadevar Sivasamy Vasantha; Sayeekannan Ramaraj

AbstractWe describe a glassy carbon electrode (GCE) modified with gold nanoparticles that were stabilized with calcium-crosslinked pectin (CCLP) and electrodeposited on multiwalled carbon nanotubes (MWCNTs) by cyclic voltammetry. The resulting electrode was used for the selective determination of L-cysteine (L-Cys). Its characterization showed that the CCLP acts as a scaffold to form highly stable, uniform and electrochemically active AuNPs. Electrochemical studies showed the MWCNT to significantly promote the electrodeposition of the CCLP-AuNPs. The new GCE exhibited excellent electrocatalytic ability towards oxidation of L-Cys in showing a lower overpotential and giving a higher oxidation peak current. The diffusion coefficient for the oxidation of L-Cys was calculated to be 3.0 × 10−6 cm2 s−1. This amperometric sensor displays a wide linear range (from 0.1 to 1,000 μM), high sensitivity (0.46 μA μM−1 cm−2) and a detection limit as low as 19 nM (at a signal-to-noise ratio of 3). The sensor was applied to specifically detect L-Cys even in the presence of 500-fold excess of interferents. It also is stable and possesses good repeatability and reproducibity, and was successfully applied to the determination of L-Cys in spiked samples of human serum. Graphical abstractCalcium ions cross linked pectin (CCLP) stabilized gold nanoparticles (AuNPs) at multiwalled carbon nanotubes (MWCNT) was electrochemically prepared. The as-prepared nanocomposite was characterized by various methods and employed for the selective determination of L-Cysteine.


Scientific Reports | 2016

Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2.

J. Vinoth Kumar; Raj Karthik; Shen-Ming Chen; V. Muthuraj; Chelladurai Karuppiah

In the present work, potato-like silver molybdate (Ag2MoO4) microstructures were synthesized through a simple hydrothermal method. The microstructures of Ag2MoO4 were characterized by various analytical and spectroscopic techniques such as XRD, FTIR, Raman, SEM, EDX and XPS. Interestingly, the as-prepared Ag2MoO4 showed excellent photocatalytic and electrocatalytic activity for the degradation of ciprofloxacin (CIP) and electrochemical detection of hydrogen peroxide (H2O2), respectively. The ultraviolet-visible (UV-Vis) spectroscopy results revealed that the potato-like Ag2MoO4 microstructures could offer a high photocatalytic activity towards the degradation of CIP under UV-light illumination, leads to rapid degradation within 40 min with a degradation rate of above 98%. In addition, the cyclic voltammetry (CV) and amperometry studies were realized that the electrochemical performance of Ag2MoO4 modified electrode toward H2O2 detection. Our H2O2 sensor shows a wide linear range and lower detection limit of 0.04–240 μM and 0.03 μM, respectively. The Ag2MoO4 modified electrode exhibits a high selectivity towards the detection of H2O2 in the presence of different biological interferences. These results suggested that the development of potato-like Ag2MoO4 microstructure could be an efficient photocatalyst as well as electrocatalyst in the potential application of environmental, biomedical and pharmaceutical samples.


RSC Advances | 2015

A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine

Rajkumar Devasenathipathy; Chelladurai Karuppiah; Shen-Ming Chen; Selvakumar Palanisamy; Bih-Show Lou; M. Ajmal Ali; Fahad M.A. Al-Hemaid

In the present study, a simple and sensitive amperometric enzyme-free glucose sensor was developed at a multiwalled carbon nanotube and cobalt tetrasulfonated phthalocyanine (MWCNT–CoTsPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by transmission electron microscopy and UV-Vis spectroscopy. UV-Vis spectroscopy results confirmed that the MWCNT–CoTsPc composite was formed via the strong π–π interaction between CoTsPc and MWCNT. Compared with pristine CoTsPc, the MWCNT–CoTsPc composite modified electrode showed a higher electrocatalytic activity and lower overpotential towards the oxidation of glucose. Amperometric i–t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 μM to 6.34 mM with a sensitivity of 122.5 μA mM−1 cm−2. The response time of the sensor was determined to be 2 s with a limit of detection of 0.14 μM (S/N = 3). The fabricated sensor also exhibited a good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited special advantages, such as low working potential, good sensitivity along with good repeatability and reproducibility, for the determination of glucose.


Journal of Colloid and Interface Science | 2017

Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol

Murugan Velmurugan; Natarajan Karikalan; Shen-Ming Chen; Yi-Hui Cheng; Chelladurai Karuppiah

This paper describes the electrochemical preparation of highly electrochemically active and conductive activated graphene oxide (aGO). Afterwards, the electrochemical properties of aGO was studied towards the simultaneous determination of hydroquinone (HQ) and catechol (CC). This aGO is prepared by the electrochemical activation of GO by various potential treatments. The resultant aGOs are examined by various physical and electrochemical characterizations. The high potential activation (1.4 to -1.5) process results a highly active GO (aGO1), which manifest a good electrochemical behavior towards the determination of HQ and CC. This aGO1 modified screen printed carbon electrode (SPCE) was furnished the sensitive detection of HQ and CC with linear concentration range from 1 to 312μM and 1 to 350μM. The aGO1 modified SPCE shows the lowest detection limit of 0.27μM and 0.182μM for the HQ and CC, respectively. The aGO1 modified SPCE reveals an excellent selectivity towards the determination of HQ and CC in the presence of 100 fold of potential interferents. Moreover, the fabricated disposable aGO1/SPCE sensor was demonstrated the determination of HQ and CC in tap water and industrial waste water.


Journal of Colloid and Interface Science | 2016

Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications

Natarajan Karikalan; Raj Karthik; Shen-Ming Chen; Murugan Velmurugan; Chelladurai Karuppiah

Acetaminophen is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of acetaminophen can cause hepatic toxicity and kidney damage. Hence, the determination of acetaminophen receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid and sensitive detection of the acetaminophen based on the bare (unmodified) screen printed carbon electrode (BSPCE) and its electrochemistry was studied in various pHs. From the observed results, the mechanism of the electro-oxidation of acetaminophen was derived for various pHs. The acetaminophen is not stable in strong acidic and strong alkaline media, which is hydrolyzed and hydroxylated. However, it is stable in intermediate pHs due to the dimerization of acetaminophen. The kinetics of the acetaminophen oxidation was briefly studied and documented in the schemes. In addition, the surface morphology and disorders of BSPCE was probed by scanning electron microscope (SEM) and Raman spectroscopy. Moreover, the BSPCE determined the acetaminophen with the linear concentration ranging from 0.05 to 190μM and the lower detection limit of 0.013μM. Besides that it reveals the good recoveries towards the pharmaceutical samples and shows the excellent selectivity, sensitivity and stability. To the best of our knowledge, this is the better performance compare to the previously reported unmodified acetaminophen sensors.

Collaboration


Dive into the Chelladurai Karuppiah's collaboration.

Top Co-Authors

Avatar

Shen-Ming Chen

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Selvakumar Palanisamy

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Raj Karthik

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Natarajan Karikalan

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Murugan Velmurugan

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rajkumar Devasenathipathy

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun-Chen Yang

Ming Chi University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge