Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chen-Bo Ji is active.

Publication


Featured researches published by Chen-Bo Ji.


PLOS ONE | 2013

Pre-Pregnancy Body Mass Index in Relation to Infant Birth Weight and Offspring Overweight/Obesity: A Systematic Review and Meta-Analysis

Zhangbin Yu; Shuping Han; Jingai Zhu; Xiaofan Sun; Chen-Bo Ji; Xirong Guo

Background Overweight/obesity in women of childbearing age is a serious public-health problem. In China, the incidence of maternal overweight/obesity has been increasing. However, there is not a meta-analysis to determine if pre-pregnancy body mass index (BMI) is related to infant birth weight (BW) and offspring overweight/obesity. Methods Three electronic bibliographic databases (MEDLINE, EMBASE and CINAHL) were searched systematically from January 1970 to November 2012. The dichotomous data on pre-pregnancy overweight/obesity and BW or offspring overweight/obesity were extracted. Summary statistics (odds ratios, ORs) were used by Review Manager, version 5.1.7. Results After screening 665 citations from three electronic databases, we included 45 studies (most of high or medium quality). Compared with normal-weight mothers, pre-pregnancy underweight increased the risk of small for gestational age (SGA) (odds ratios [OR], 1.81; 95% confidence interval [CI], 1.76–1.87); low BW (OR, 1.47; 95% CI, 1.27–1.71). Pre-pregnancy overweight/obesity increased the risk of being large for gestational age (LGA) (OR, 1.53; 95% CI, 1.44–1.63; and OR, 2.08; 95% CI; 1.95–2.23), high BW (OR, 1.53; 95% CI, 1.44–1.63; and OR, 2.00; 95% CI; 1.84–2.18), macrosomia (OR, 1.67; 95% CI, 1.42–1.97; and OR, 3.23; 95% CI, 2.39–4.37), and subsequent offspring overweight/obesity (OR, 1.95; 95% CI, 1.77–2.13; and OR, 3.06; 95% CI, 2.68–3.49), respectively. Sensitivity analyses revealed that sample size, study method, quality grade of study, source of pre-pregnancy BMI or BW had a strong impact on the association between pre-pregnancy obesity and LGA. No significant evidence of publication bias was observed. Conclusions Pre-pregnancy underweight increases the risk of SGA and LBW; pre-pregnancy overweight/obesity increases the risk of LGA, HBW, macrosomia, and subsequent offspring overweight/obesity. A potential effect modification by maternal age, ethnicity, gestational weight gain, as well as the role of gestational diseases should be addressed in future studies.


Molecular and Cellular Endocrinology | 2010

Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes.

Chun-Lin Gao; Chun Zhu; Ya-Ping Zhao; Xiao-Hui Chen; Chen-Bo Ji; Chun-Mei Zhang; Jingai Zhu; Zhengkun Xia; Mei-Ling Tong; Xirong Guo

Hyperglycemia and high free fatty acids (FFAs) are two well-known characteristics of type 2 diabetes, and are also implicated in the etiology of insulin resistance. However, their roles in mitochondrial dysfunction of white adipocytes are not well-studied. In this study, we investigated the effects of high glucose (25 mM), high free fatty acids (FFAs, 1mM), or a combination of both high glucose+high FFAs on mitochondrial function in differentiated 3T3-L1 adipocytes after 48 h of treatment. We found that high glucose, high FFAs, or high glucose+high FFAs reduced insulin-stimulated glucose uptake in differentiated 3T3-L1 adipocytes. In addition, the mitochondria became smaller and more compact. Levels of the mitofusion protein mfn1 decreased and levels of the mitofission protein Drp1 increased as compared to controls. NRF1 was downregulated, and PGC-1 beta levels were diminished in the high glucose and high glucose+high FFAs conditions. Levels of PGC-1 alpha and mtTFA mRNA were greatly downregulated. No difference was found in the mitochondrial DNA (mtDNA) and intracellular ATP levels of treated cells compared to control cells. Cells treated with high glucose or high FFAs accumulated significant amounts of reactive oxygen species (ROS) and displayed a loss of the mitochondrial membrane potential. High glucose and high glucose+high FFAs led to similar decreases in intramitochondrial calcium concentration, although high FFAs had no effect. Therefore, high glucose and high FFAs can regulate insulin sensitivity, and mitochondrial dysfunction may occur in this process.


Molecular and Cellular Endocrinology | 2010

TNF-α induces mitochondrial dysfunction in 3T3-L1 adipocytes

Xiao-Hui Chen; Ya-Ping Zhao; Mei Xue; Chen-Bo Ji; Chun-Lin Gao; Jingai Zhu; Da-Ni Qin; Chun-Zhao Kou; Xiao-Hong Qin; Mei-Ling Tong; Xirong Guo

TNF-alpha was the first proinflammatory cytokine identified linking obesity, insulin resistance and chronic inflammation. However, the mechanism of TNF-alpha in the etiology of insulin resistance is still far from clear. Because the mitochondria play an important role in energy metabolism, we investigated whether mitochondrial dysfunction is involved in pathogenesis of TNF-alpha-mediated insulin resistance. First, a fully differentiated insulin-resistant 3T3-L1 adipocyte model was established by incubating with 4 ng/ml TNF-alpha for 4 d, and then the mitochondrial morphology and functions were observed. TNF-alpha treatment induced pronounced morphological changes in the mitochondria, which became smaller and condensed, and some appeared hollow and absent of cristae. Mitochondrial dynamics changes were observed as increased mitofusion protein mfn1 and mitofission protein Drp1 levels compared with controls. No obvious effects on mitochondrial biogenesis were found. PGC-1alpha levels decreased, but no significant changes were found in mtTFA mRNA expression, NRF1mRNA expression and mitochondrial DNA (mtDNA). TNFalpha treatment also led to decreased mitochondrial membrane potential and reduced production of intracellular ATP, as well as accumulation of significant amounts of reactive oxygen species (ROS). Further research is required to determine if mitochondrial dysfunction is involved in the inflammatory mechanism of insulin resistance and may be a potential target for the treatment of insulin resistance.


Journal of Bioenergetics and Biomembranes | 2011

IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes

Chen-Bo Ji; Xiao-Hui Chen; Chun-Lin Gao; Liuhong Jiao; Jianguo Wang; Guangfeng Xu; Hailong Fu; Xirong Guo; Ya-Ping Zhao

Interleukin-6 (IL-6) has emerged as an important cytokine involved in the regulation of metabolism. However, the role of IL-6 in the etiology of obesity and insulin resistance is not fully understood. Mitochondria are key organelles of energy metabolism, and there is growing evidence that mitochondrial dysfunction plays a crucial role in the pathogenesis of obesity-associated insulin resistance. In this study, we determined the direct effect of IL-6 on lipolysis in adipocytes, and the effects of IL-6 on mitochondrial function were investigated. We found that cells treated with IL-6 displayed fewer lipids and an elevated glycerol release rate. Further, IL-6 treatment led to decreased mitochondrial membrane potential, decreased cellular ATP production, and increased intracellular ROS levels. The mitochondria in IL-6-treated cells became swollen and hollow with reduced or missing cristae. However, insulin-stimulated glucose transport was unaltered. PGC-1α, NRF1, and mtTFA mRNA levels were markedly increased, and the mitochondrial contents were also increased. Our results demonstrate that IL-6 can exert a direct lipolytic effect and induce mitochondrial dysfunction. However, IL-6 did not affect insulin sensitivity in adipocytes in vitro. We deduce that in these cells, enhanced mitochondrial biogenesis might play a compensatory role in glucose transport.


Cell Biochemistry and Biophysics | 2012

Differential DNA Methylation Status Between Human Preadipocytes and Mature Adipocytes

Jingai Zhu; Li Xia; Chen-Bo Ji; Chun-Mei Zhang; Guan-zhong Zhu; Chunmei Shi; Lin Chen; Da-Ni Qin; Xirong Guo

Obesity is a multifactorial disease resulting from interactions between susceptibility genes, psychosocial, and environmental factors. However, it is becoming evident that interindividual differences in obesity susceptibility depend also on epigenetic factors, although the mechanisms have not been fully elucidated. We have undertaken a genome-wide analysis of DNA methylation of human preadipocytes and mature adipocytes to examine the differences in methylation between them. We found hypomethylation occurring in 2,701 genes and hypermethylation in 1,070 genes after differentiation. Meanwhile, Gene Ontology analysis and Ingenuity Pathway Analysis showed many significant gene functions and pathways with altered methylation status after adipocyte differentiation. In addition, Signal-Net analysis showed that tumor necrosis factor-α, mitogen-activated protein kinase, and interleukin-8 were important to the formation of this network. Our results suggest that DNA methylation mechanisms may be involved in regulating the differentiation process of human preadipocytes.


Molecular and Cellular Biochemistry | 2010

Overexpression of NYGGF4 (PID1) induces mitochondrial impairment in 3T3-L1 adipocytes

Ya-Ping Zhao; Chun-Mei Zhang; Xiao-Hui Chen; Chun-Lin Gao; Chen-Bo Ji; Fu-Kun Chen; Chun Zhu; Jingai Zhu; Jialin Wang; Lingmei Qian; Xirong Guo

NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. The exact mechanism by which NYGGF4 induces insulin resistance has not yet been fully elucidated. In this study, we demonstrated that the overexpression of NYGGF4 in 3T3-L1 adipocytes decreased mitochondrial mass, mitochondrial DNA, and intracellular ATP synthesis. In addition, NYGGF4 overexpression also led to an imbalance of the mitochondrial dynamics and excess intracellular ROS production. Collectively, our results indicated that the overexpression of NYGGF4 caused mitochondrial dysfunction in adipocytes, which might be responsible for the development of NYGGF4-induced insulin resistance.


European Journal of Endocrinology | 2008

LYRM1, a novel gene promotes proliferation and inhibits apoptosis of preadipocytes

Jie Qiu; Chun-Lin Gao; Min Zhang; Ronghua Chen; Xia Chi; Feng Liu; Chun-Mei Zhang; Chen-Bo Ji; Xiao-Hui Chen; Ya-Ping Zhao; Xiao-Nan Li; Mei-Ling Tong; Yuhui Ni; Xirong Guo

OBJECTIVEnTo characterize a novel gene, Homo sapiens LYR motif containing 1 (LYRM1), that is highly expressed in omental adipose tissue of obese subjects.nnnMETHODS AND RESULTSnRT-PCR and western blot analysis confirmed that both mRNA and protein levels of LYRM1 were higher in omental adipose tissue of obese subjects than in normal weight subjects. RT-PCR analysis demonstrated that LYRM1 expression is widely distributed, with the highest levels of expression occurring in adipose tissue. A fusion protein of LYRM1 and green fluorescent protein as well as western blot analysis were used to identify the subcellular localization of LYRM1 in the nucleus. Based on Oil red O staining and the expression profile of specific differentiation markers, ectopic LYRM1 expression was not found to significantly affect adipogenesis. MTT assays and cell cycle analysis showed that LYRM1 promotes preadipocyte proliferation, and data from annexin V-FITC and caspase-3 activity assays further determined that LYRM1 can inhibit apoptosis of preadipocytes.nnnCONCLUSIONSnBy increasing cell proliferation and lowering the rate of apoptosis, LYRM1 has the potential to modulate the size of the preadipocyte pool and influence adipose tissue homeostasis.


Molecular Biology Reports | 2010

NYGGF4 homologous gene expression in 3T3-L1 adipocytes: regulation by FFA and adipokines.

Ya-Ping Zhao; Chun-Mei Zhang; Chun Zhu; Xiao-Hui Chen; Jialin Wang; Chen-Bo Ji; Xia Chi; Qin Hong; Yuzhu Peng; Xirong Guo

NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese subjects and is involved in insulin resistance. In the present study, the mRNA expression of NYGGF4 homologous genes was examined in the 3T3-L1 cell line. The NYGGF4 mRNAs were expressed at low levels in the 3T3-L1 preadipocytes. During the conversion of 3T3-L1 preadipocytes to adipocytes, the expression of NYGGF4 mRNA was upregulated. On the 8th day after induction of differentiation, the NYGGF4 mRNA levels peaked and remained high. Free fatty acids (FFA) and tumor necrosis factor-α (TNFα) could upregulate NYGGF4 mRNA expression in 3T3-L1 adipocytes, while interleukin-6 (IL-6), leptin, and resistin exerted an inhibitory effect. The results suggest that the expression of NYGGF4 mRNA is affected by a variety of factors that are related to insulin sensitivity. It is likely that NYGGF4 may be an important mediator in the development of obesity-related insulin resistance.


Molecular Genetics and Metabolism | 2010

Overexpression of LYRM1 induces mitochondrial impairment in 3T3-L1 adipocytes

Xin-Guo Cao; Chun-Zhao Kou; Ya-Ping Zhao; Chun-Lin Gao; Chun Zhu; Chun-Mei Zhang; Chen-Bo Ji; Da-Ni Qin; Min Zhang; Xirong Guo

Homo sapiens LYR motif containing 1 (LYRM1) is a recently discovered gene involved in adipose tissue homeostasis and obesity-associated insulin resistance. The exact mechanism by which LYRM1 induces insulin resistance has not yet been fully elucidated. In this study, we demonstrated that the overexpression of LYRM1 in 3T3-L1 adipocytes resulted in reduced insulin-stimulated glucose uptake, an abnormal mitochondrial morphology, and a decrease in intracellular ATP synthesis and mitochondrial membrane potential. In addition, LYRM1 overexpression led to excessive production of intracellular of reactive oxygen species. Collectively, our results indicated that the overexpression of LYRM1 caused mitochondrial dysfunction in adipocytes, which might be responsible for the development of LYRM1-induced insulin resistance.


Journal of Bioenergetics and Biomembranes | 2012

Knockdown of NYGGF4 increases glucose transport in C2C12 mice skeletal myocytes by activation IRS-1/PI3K/AKT insulin pathway

Xue-Qi Zeng; Chun-Mei Zhang; Mei-Ling Tong; Xia Chi; Xi-Ling Li; Chen-Bo Ji; Rong Zhang; Xirong Guo

NYGGF4, an obesity-related gene, is proposed to be involved in the development of insulin resistance. Skeletal muscle is a primary target organ for insulin and NYGGF4 showed a relatively high expression level in skeletal muscle. Therefore, this study aimed to explore the effect of NYGGF4 on insulin sensitivity of skeletal muscle cells. RNA interference (RNAi) was adopted to silence NYGGF4 expression in mice C2C12 skeletal myocytes. A remarkably increased insulin-stimulated glucose uptake and GLUT4 translocation was observed in NYGGF4 silencing C2C12 cells. Importantly, the enhanced glucose uptake induced by NYGGF4 silencing could be abrogated by the PI3K inhibitor LY294002. In addition, the crucial molecules involved in PI3K insulin signaling pathway were detected by western blotting. The results showed that NYGGF4 knockdown dramatically activate the insulin-stimulated phosphorylation of IRS-1 and AKT. Taken together, these data demonstrate that NYGGF4 knockdown increases glucose transport in myocytes by activation of the IRS-1/PI3K/AKT insulin pathway.

Collaboration


Dive into the Chen-Bo Ji's collaboration.

Top Co-Authors

Avatar

Xirong Guo

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun-Mei Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun-Lin Gao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Hui Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun Zhu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Jingai Zhu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ya-Ping Zhao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun-Zhao Kou

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Da-Ni Qin

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Min Zhang

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge