Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chen-Lu Tsou is active.

Publication


Featured researches published by Chen-Lu Tsou.


Biochimica et Biophysica Acta | 1990

Dissociation and aggregation of d-glyceraldehyde-3-phosphate dehydrogenase during denaturation by guanidine hydrochloride

Shu-Jian Liang; Ying-Zhang Lin; Jun-Mei Zhou; Chen-Lu Tsou; Peiqiang Wu; Zukang Zhou

The inactivation of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) (GAPDH) during guanidine hydrochloride (GdnHCl) denaturation has been compared with its state of aggregation and unfolding, by light scattering and fluorescence measurements. The enzyme first dissociates at low concentrations of GdnHCl, followed by the formation of a highly aggregated state with increasing denaturant concentrations, and eventually by complete unfolding and dissociation to the monomer at concentrations of greater than 2 M GdnHCl. The aggregation and final dissociation correspond roughly with the two stages of fluorescence changes reported previously (Xie, G.-F. and Tsou, C.-L. (1987) Biochim. Biophys. Acta 911, 19-24). Rate measurements show a very rapid inactivation, the extents of which increase with increasing concentrations of GdnHCl. This initial rapid phase of inactivation which takes place before dissociation and unfolding of the molecule is in agreement with the results obtained with other enzymes, that the active site is affected before noticeable conformational changes can be detected for the enzyme molecule as a whole. A scheme for the steps leading to the final denaturation, and dissociation of the enzyme to the inactive and unfolded monomer, is proposed.


Biochimica et Biophysica Acta | 1986

Comparison of activity and conformation changes during refolding of urea-denatured creatine kinase.

Hai-Meng Zhou; Chen-Lu Tsou

The course of the recovery of the enzymatic activity and the native conformation during the renaturation of urea-denatured creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) has been studied. Under suitable conditions, an activity recovery of 95% can be obtained and the reactivation follows a triphasic course. The initial two phases are relatively fast, whereas the slow phase takes some 24 h to reach completion. The recovery of the native conformation has been followed by changes in fluorescence, ultraviolet absorption and in exposed SH groups and has been shown to be a biphasic process. Both the reactivation and the refolding processes are independent of protein concentrations within a certain range, showing that the dimerization of the enzyme molecule is not rate-limiting. A comparison of the rate constants for the refolding of the molecule with those for the recovery of its catalytic activity shows that these are not synchronized and the activity recovery approaches completion after the refolding and dimerization of the subunits so far as can be detected by the methods employed. The final stage of refolding with complete activity recovery probably involves subtle conformational changes of the dimeric enzyme molecule not detectable by the physiochemical methods used in the present study.


Biochimica et Biophysica Acta | 1986

Determination of rate constant for the irreversible inhibition of acetylcholine esterase by continuously monitoring the substrate reaction in the presence of the inhibitor

Wei Liu; Chen-Lu Tsou

The kinetics of the irreversible inhibition of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) by diisopropyl fluorophosphate and paraoxon have been studied by the approach of following the substrate reaction continuously in the presence of both the substrate and the inhibitor based on kinetic equations previously derived (Tsou, C.-L. (1965) Acta Biochim. Biophys. Sinica 5, 387-417). From determinations of the effects of different concentrations of substrate and the inhibitors on the apparent rate constants for the irreversible inhibition reactions it can be shown that these inhibitors are of the competitive complexing type. Both the reversible dissociation constant for the enzyme inhibitor complex and the rate constant for the subsequent phosphorylation step can be obtained from suitable plots of the experimental data.


Biochimica et Biophysica Acta | 1993

Inactivation precedes conformation change during thermal denaturation of adenylate kinase

Yan-Ling Zhang; Jun-Mei Zhou; Chen-Lu Tsou

During the thermal denaturation of rabbit muscle adenylate kinase, the extents and rates of both unfolding and aggregation are dependent on protein concentration. Under identical conditions, inactivation takes place at a lower temperature than noticeable conformational changes and aggregation as measured by fluorescence, second derivative absorption spectroscopy, far ultraviolet circular dichroism and light scattering. Kinetics of inactivation can be resolved into two phases and at the same protein concentrations, the unfolding and aggregation rates are about one order of magnitude slower than the fast phase and approximately the same as the slow phase rate of the inactivation reaction between 35 and 60 degrees C. This is in general accord with the suggestion made previously that the active site of this enzyme is situated in a region more flexible than the molecule as a whole (Tsou, C.L. (1986) Trends Biochem. Sci. 11, 427-429). The inactivated enzyme cannot be reactivated by cooling and standing at 4 degrees C but can be over 80% reactivated by cooling and first standing in 3 M guanidine hydrochloride followed by diluting out the denaturant.


Biochimica et Biophysica Acta | 1993

Inactivation before significant conformational change during denaturation of papain by guanidine hydrochloride

Jian Xiao; Shu-Jian Liang; Chen-Lu Tsou

During denaturation by GuHCl, papain shows a rapid decrease in activity with increasing concentrations of the denaturant followed by an intermediate stage of relatively little change from 1 to 2 M before complete inactivation at 4 M GuHCl. At GuHCl concentrations lower than 2 M, enzyme activity is more sensitive to GuHCl than noticeable conformation changes as followed by fluorescence and CD measurements. Kinetics of GuHCl inactivation were studied by following the substrate reaction in the presence of denaturant and the apparent rate constants thus obtained were found to be only slightly higher than those for conformational changes. However, apparent inactivation rate constants obtained in the presence of saturating concentration of substrate are actually inactivation constants for the ES complex. The inactivation rates at different substrate concentrations were, therefore, followed and the microscopic inactivation rate constants for the free enzyme obtained (Tsou, C.L. (1988) Adv. Enzymol. 61, 381-436). It was found that substrate protects strongly against inactivation and at the same GuHCl concentration, the inactivation rate of the free enzyme is 100-fold higher than that of unfolding. The above results show that the activity of papain is more sensitive to GuHCl than its overall conformation and like the enzymes previously studied in this laboratory, its active site is more flexible than the enzyme molecule as a whole.


Biochimica et Biophysica Acta | 1990

COMPARISON OF INACTIVATION AND CONFORMATIONAL CHANGES OF D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE DURING THERMAL DENATURATION

Ying-Zhang Lin; Shu-Jian Liang; Jun-Mei Zhou; Chen-Lu Tsou; Peiqiang Wu; Zukang Zhou

The inactivation of D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating) EC 1.2.1.12) (GAPDH) during thermal denaturation has been compared to its dissociation-aggregation measured by light scattering and changes in secondary structure measured by CD in the far ultraviolet. The inactivation at 38.5 degrees C consists of two stages. The rate of the first stage is too fast to be followed by conventional methods. The extent of this fast stage inactivation increases with increasing temperature and, more markedly, with increasing pH. At this stage, the inactivation is reversible and no appreciable dissociation or change in secondary structure can be detected. The secondary structure of the enzyme is relatively heat stable, showing no appreciable change at 38.5 degrees C. At this temperature, the enzyme first dissociates within several minutes probably into dimers and with prolonged heating, it becomes irreversibly aggregated. The above results are in accord with the earlier suggestion, based on results obtained during denaturation of a number of enzymes by guanidine hydrochloride (GdnHCl) and urea, that for some enzymes the active site is situated in a region more susceptible to perturbation than the molecule as a whole (Tsou, C.-L. (1986) Trends Biochem. Sci. 11, 427).


Biochimica et Biophysica Acta | 1991

FTIR studies of secondary structures of bovine insulin and its derivatives

Jiang Wei; Ying-Zhang Lin; Jun-Mei Zhou; Chen-Lu Tsou

The amide I bands of the deconvolved FTIR spectrum of bovine insulin, despentapeptide (B26-B30) insulin and desoctapeptide (B23-B30) insulin in D2O solution have been assigned to alpha-helix, the 3(10) helix, irregular helix, extended chains, beta-turns and other secondary structures. From the peak areas the relative contents of these structures obtained are in general agreement with those calculated from the known structures of porcine insulin and DPI in the crystalline state. The main difference in the structure of DOI with those of insulin and DPI is the shortening of the helix segment and an extended chain for the C terminal segment in the B chain.


Biochimica et Biophysica Acta | 1987

Conformational and activity changes during guanidine denaturation of d-glyceraldehyde-3-phosphate dehydrogenase

Gui-Fu Xie; Chen-Lu Tsou

Changes in intrinsic protein fluorescence of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been compared with inactivation of the enzyme during denaturation in guanidine solutions. The holoenzyme is completely inactivated at guanidine concentrations less than 0.5 M and this is accompanied by a red shift of the emission maximum at 335 nm and a marked decrease in intensity of the intrinsic fluorescence. At 0.5 M guanidine, the inactivation is a slow process, with a first-order rate constant of 2.4 X 10(-3) s-1. A further red shift in the emission maximum and a decrease in intensity occur at guanidine concentrations higher than 1.5 M. The emission peak at 410 nm of the fluorescent NAD derivative introduced at the active site of this enzyme (Tsou, C.L. et al. (1983) Biochem. Soc. Trans. 11, 425-429) shows both a red shift and a marked decrease in intensity at the same guanidine concentration required to bring about the inactivation and the initial changes in the intrinsic fluorescence of the holoenzyme. It appears that treatment by low guanidine concentrations leads to both complete inactivation and perturbation of the active site conformation and that a tryptophan residue is situated at or near the active site.


Biochimica et Biophysica Acta | 1987

Activity change during unfolding of bovine pancreatic ribonuclease A in guanidine

Wang-yi Liu; Chen-Lu Tsou

Bovine pancreatic ribonuclease A loses almost completely its activity in 2-3 M guanidine, whereas only very slight conformational changes can be detected when following its unfolding by changes in its intrinsic fluorescence at 305 nm and ultraviolet absorbance at 287 nm. Reactivation on diluting out the denaturant is a time-dependent process, indicating that the inactivation is not due to inhibition by a reversible association of the enzyme with guanidine. The kinetic method of following the substrate reaction, in the presence of the denaturant previously proposed for use in the study of rapid inactivation reactions (Tian, W.X. and Tsou, C.-L. (1982) Biochemistry 21, 1028-1032), is applied to examine the inactivation rates of this enzyme during guanidine denaturation, and these have been compared with the unfolding rates as followed by fluorescence and absorbance changes. It is shown that during the unfolding of this enzyme in guanidine, the inactivation of the enzyme occurs within the dead time of mixing in a stopped-flow apparatus and is at least several orders of magnitude faster than the unfolding reaction as detected by the optical parameters. It appears that, as in the case of creatine kinase reported previously, the active site of a small enzyme stabilized by multiple disulfide linkages, such as ribonuclease A, is also situated in a region which is much more liable to being perturbed by denaturants than is the molecule as a whole.


Journal of Protein Chemistry | 2003

Effects of macromolecular crowding on the unfolding and the refolding of D-glyceraldehyde-3-phosophospate dehydrogenase

Guoping Ren; Zong Lin; Chen-Lu Tsou; Chih-chen Wang

The effects of crowding agents, polyethylene glycol (PEG 20K), Dextran 70, and bovine serum albumin, on the denaturation of homotetrameric d-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in 0.5 M guanidine hydrochloride and the reactivation of the fully denatured enzyme have been examined quantitatively. Increasing the concentration of PEG 20K to 225 mg/ml decreases the rate constant of slow phase of GAPDH inactivation to 5% but with no change for the fast phase. Chaperone GroEL assists GAPDH refolding greatly and shows even higher efficiency under crowding condition. Crowding mainly affects refolding steps after the formation of the dimeric folding intermediate.

Collaboration


Dive into the Chen-Lu Tsou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge