Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where -Sheng Chen is active.

Publication


Featured researches published by -Sheng Chen.


Journal of Biomechanics | 2014

Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together

Marcel Dreischarf; Thomas Zander; A. Shirazi-Adl; Christian M. Puttlitz; Clayton J. Adam; Chen-Sheng Chen; Vijay K. Goel; Ata M. Kiapour; Yoon Hyuk Kim; K.M. Labus; J.P. Little; Won Man Park; Y.H. Wang; H.J. Wilke; A. Rohlmann; Hendrik Schmidt

Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centers around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.


Medical Engineering & Physics | 2009

Biomechanical comparison between lumbar disc arthroplasty and fusion

Shih-Hao Chen; Zheng-Cheng Zhong; Chen-Sheng Chen; Wen-Jer Chen; Chinghua Hung

The artificial disc is a mobile implant for degenerative disc replacement that attempts to lessen the degeneration of the adjacent elements. However, inconsistent biomechanical results for the neighboring elements have been reported in a number of studies. The present study used finite element (FE) analysis to explore the biomechanical differences at the surgical and both adjacent levels following artificial disc replacement and interbody fusion procedures. First, a three-dimensional FE model of a five-level lumbar spine was established by the commercially available medical imaging software Amira 3.1.1, and FE software ANSYS 9.0. After validating the five-level intact (INT) model with previous in vitro studies, the L3/L4 level of the INT model was modified to either insert an artificial disc (ProDisc II; ADR) or incorporate bilateral posterior lumbar interbody fusion (PLIF) cages with a pedicle screw fixation system. All models were constrained at the bottom of the L5 vertebra and subjected to 150N preload and 10Nm moments under four physiological motions. The ADR model demonstrated higher range of motion (ROM), annulus stress, and facet contact pressure at the surgical level compared to the non-modified INT model. At both adjacent levels, ROM and annulus stress were similar to that of the INT model and varied less than 7%. In addition, the greatest displacement of posterior annulus occurred at the superior-lateral region. Conversely, the PLIF model showed less ROM, less annulus stress, and no facet contact pressure at the surgical level compared to the INT model. The adjacent levels had obviously high ROM, annulus stress, and facet contact pressure, especially at the adjacent L2/3 level. In conclusion, the artificial disc replacement revealed no adjacent-level instability. However, instability was found at the surgical level, which might accelerate degeneration at the highly stressed annulus and facet joint. In contrast to disc replacement results, the posterior interbody fusion procedure revealed possibly accelerative degeneration of the annulus and facet joint at both adjacent levels.


Annals of Biomedical Engineering | 2008

Using an Optimization Approach to Design an Insole for Lowering Plantar Fascia Stress—A Finite Element Study

Yu-Chun Hsu; Yih-Wen Gung; Shih-Liang Shih; Chi-Kuang Feng; Shun-Hwa Wei; Chung-Huang Yu; Chen-Sheng Chen

Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus.This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.


Spine | 2006

Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis.

Ming-Fu Chiang; Zheng-Cheng Zhong; Chen-Sheng Chen; Cheng-Kung Cheng; Shih-Liang Shih

Study Design. Using finite element models to study the biomechanics of lumbar instrumented posterior lumbar interbody fusion (PLIF) with one or two cages. Objective. Analyzing the biomechanics of instrumented PLIF with one or two cages as to evaluate whether a single cage is adequate for instrumented PLIF. Summary of Background Data. Implantation of a single cage in instrumented PLIF of lumbar spine is still controversial. Methods. Three validated finite element models of L3–L5 lumbar segment were established [intact model (INT), one cage model (LS-1), and two cages model (LS-2)]. The available finite element program ANSYS 6.0 (Swanson Analysis System Inc., Houston, TX) was applied. To analyze the biomechanics of these models, 10 Nm flexion, extension, rotation, and lateral bending moment with 150 N of preload were respectively imposed on the superior surfaces of the L3. Results. Compared with the INT model, the decrease of ROM in the LS-1 and LS-2 models were exaggerated from 0.67° to 3.73° and ranged from 37.2% to 86.1% in all motions. The mean subsidence was found to be slightly higher in the LS-1 model. Most of the cage dislodgement in both models was less than 0.03 mm. The mean dislodgement was slightly higher in the LS-1 model. The stress of cage was found to be high in the LS-2 model. The mean stress of screw was raised to 4.5% to 9.7% in the LS-1, which was higher than that in the LS-2 model. In general, stress of adjacent disc was more pronounced in the LS-2 model. The most stress distributed at the anterior portion of the adjacent disc, which could be used to interpret the clinical findings of the early adjacent disc degeneration. Conclusions. A single cage inserted in an instrumented PLIF gains approximate biomechanical stability, slight greater subsidence, and a slight increase in screw stress but less early degeneration in adjacent disc. Adjusting these factors, instrumented PLIF with one cage could be encouraged in clinical practice.


Journal of Spinal Disorders & Techniques | 2010

Influence of Dynesys System Screw Profile on Adjacent Segment and Screw

Chien-Lin Liu; Zheng-Cheng Zhong; Shih-Liang Shih; Chinghua Hung; Yong-Eng Lee; Chen-Sheng Chen

Study Design Displacement-controlled finite element analysis was used to evaluate the mechanical behavior of the lumbar spine after insertion of the Dynesys dynamic stabilization system. Objective This study aimed to investigate whether different depths of screw placement of Dynesys would affect load sharing of screw, range of motion (ROM), annulus stress, and facet contact force. Summary of Background Data In clinical follow-up, a high rate of screw complications and adjacent segment disease were found after using Dynesys. The pedicle screw in the Dynesys system is not so easy to implant into the standard position and causes the screw to protrude more prominently from the pedicle. Little is known about how the biomechanical effects are influenced by the Dynesys screw profile. Methods The Dynesys was implanted in a 3-dimensional, nonlinear, finite element model of the L1 to L5 lumbar spine. Different depths of screw position were modified in this model by 5 and 10 mm out of the pedicle. The model was loaded to 150 N preload and controlled the same ROMs by 20, 15, 8, and 20 degrees in flexion, extension, torsion, and lateral bending, respectively. Resultant ROM, annulus stress, and facet contact force were analyzed at the surgical and adjacent level. Results Under flexion, extension, and lateral bending, the Dynesys provided sufficient stability at the surgical level, but increased the ROM at the adjacent level. Under flexion and lateral bending, the Dynesys alleviated annulus stress at the surgical level, but increased annulus stress at the adjacent level. Under extension, the Dynesys decreased facet loading at the surgical level but increased facet loading at the adjacent level. Conclusions This study found that the Dynesys system was able to restore spinal stability and alleviate loading on disc and facet at the surgical level, but greater ROM, annulus stress, and facet loading were found at the adjacent level. In addition, profile of the screw placement caused only a minor influence on the ROM, annulus stress, and facet loading, but the screw stress was noticeably increased.


Medical Engineering & Physics | 2012

Finite element analysis of the dental implant using a topology optimization method

Chih-Ling Chang; Chen-Sheng Chen; Chang-Hung Huang; Ming-Lun Hsu

In recent years, many attempts have been made to optimize the shape of dental implants. The purpose of this study took advantage of the topology optimization in the finite element (FE) method to look for redundant material distribution on a dental threaded implant and redesigned a new implant macrogeometry with the evaluation of its biomechanical functions. Three-dimensional FE models were created of a first molar section of the maxilla and embedded with an implant, abutment and a superstructure by using the commercial software ANSYS 11.0. The final design of a new implant was shaped by topology optimization, and four FE models namely traditional implants with bonded (TB) and contact (TC) interfaces, and new implants with bonded (NB) and contact (NC) interfaces, were established. Material properties of compact and cancellous bone were modeled as fully orthotropy and transversely isotropy respectively. Oblique (200-N vertical and 40-N horizontal) occlusal loading was applied on the central and distal fossa of the crown. The FE model estimated that the volume of the new implant could be reduced by 17.9% of the traditional one and the biomechanical performances were similar, such as the stress of the implant, stress of the implant-bone complex, lower displacement, and greater stiffness than the traditional implant. The advantages of the new implant increased the space to allow more new bone ingrowth or assist in fusing more bone graft into the bone sustaining the implant stability and saved material. Its disadvantage was higher stress level compared with that of the traditional implant.


Microvascular Research | 2012

Impaired microvascular flow motion in subclinical diabetic feet with sudomotor dysfunction

Pi-Chang Sun; Chen-Sheng Chen; Cheng-Deng Kuo; Hong-Da Lin; Rai-Chi Chan; Mu-Jung Kao; Shun-Hwa Wei

Impaired cutaneous blood flow and sweating dysfunction might be among the earliest manifestations of diabetic autonomic neuropathy. This study assessed the pathophysiological basis underlying skin vasomotion changes and their relation with progressive sudomotor dysfunction and other autonomic and somatic measures in subclinical diabetic feet. Laser Doppler skin perfusion was assessed on 68 diabetic and 25 control subjects. The low-frequency vasomotion was transformed into three frequency intervals 0.0095-0.021, 0.021-0.052 and 0.052-0.145 Hz, respectively, for the investigation of endothelial, neurogenic and myogenic effects on microcirculatory alterations. The diabetic patients were categorized into three groups by increasing severity of sudomotor dysfunction: SSR+ (sympathetic skin response present; 27 patients), SSR- (SSR absent; 23 patients) and at-risk (SSR absent and of preulcerative cracked skin; 18 patients). All diabetic patients underwent nerve conduction and cardiovascular autonomic studies. The total spectral and endothelial activity was significantly decreased only in the at-risk group. The SSR- group had lower neurogenic vasomotion than the SSR+ group (p<0.05). Although no statistical difference was noted between any group in absolute myogenic spectrum, the SSR- group had higher normalized myogenic activity than the SSR+ group (p<0.01). The larger drop in orthostatic pressure was paralleled by a reduction in the myogenic amplitude (r=-0.33, p<0.01). These results suggested that early impairment of low-frequency flow motion correlated closely with the presence of sudomotor dysfunction of subclinical feet mainly in neurogenic and endothelial components. Impaired systemic vascular tone as manifested by orthostatic hypotension was proportional to the degree of myogenic dysregulation in diabetic patients.


Computer Methods in Biomechanics and Biomedical Engineering | 2012

Biomechanical analysis of foot with different foot arch heights: a finite element analysis

Pi-Chang Sun; Shih-Liang Shih; Yu-Ling Chen; Yu-Chun Hsu; Ruei-Cheng Yang; Chen-Sheng Chen

Clinically, different foot arch heights are associated with different tissue injuries to the foot. To investigate the possible factors contributing to the difference in foot arch heights, previous studies have mostly measured foot pressure in either low-arched or high-arched feet. However, little information exists on stress variation inside the foot with different arch heights. Therefore, this study aimed to implement the finite element (FE) method to analyse the influence of different foot arches. This study established a 3D foot FE model using software ANSYS 11.0. After validating the FE model, this study created low-arched, high-arched and normal-arched foot FE models. The FE analysis found that both the stress and strain on the plantar fascia and metatarsal were higher in the high-arched foot, whereas the stress and strain on the calcaneous, navicular and cuboid were higher in low-arched foot. Additionally, forefoot pressure was increased with an increase in arch height.


Diabetes and Vascular Disease Research | 2013

Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes

Pi-Chang Sun; Cheng-Deng Kuo; Lin-Yang Chi; Hong-Da Lin; Shun-Hwa Wei; Chen-Sheng Chen

Systemic microvascular complications are related to the presence of diabetic neuropathy. This study investigated the associations of blood flow oscillations with peripheral neuropathy in 25 controls and 3 diabetic groups including clinical (24), subclinical (27) and without neuropathy (26). Laser Doppler skin perfusion was transformed into three low-frequency subintervals corresponding to endothelial, neurogenic and myogenic vasomotor controls. The average vasomotion was significantly reduced in clinical neuropathy group and characterized by endothelial and neural but not smooth muscle–related changes. The normalized spectrums revealed a relative increase of myogenic and decrease of neurogenic activity in subclinical neuropathy group. The myogenic component showed a statistically inverse correlation with postural fall in systolic blood pressure (r = −0.32, p < 0.01). The diabetic patients with decreased low-frequency vasomotor responses were associated with increased odds ratio of peripheral neuropathy [odds ratio = 3.51 (95% confidence interval = 1.19–10.31), p = 0.02]. This study elucidated possible interaction between impaired microvascular flow motion and diabetic peripheral neuropathy. The vasomotor changes of skin microcirculation could be detected even in the absence of overt cardiovascular dysfunction.


Spine | 2007

Shape Modification of the Boston Brace Using a Finite-element Method With Topology Optimization

Yi-Ching Liao; Chi-Kuang Feng; Mei-Wun Tsai; Chen-Sheng Chen; Cheng-Kung Cheng; Yu-Chih Ou

Study Design. Using a finite-element (FE) method to reshape the Boston brace, and evaluating the correction effect of the modified Boston brace in terms of Cobb angle. Objective. This study aimed to reduce the weight of the Boston brace using a FE method with topology optimization. Summary of Background Data. The Boston brace is widely used to correct an abnormal spinal curve in adolescent idiopathic scoliosis. However, patients wearing the brace usually complain about discomfort caused by its bulkiness. Methods. An FE model of a traditional Boston brace was constructed using the software ANSYS 9.0. The loading condition was taken from an X-sensor measuring contact pressures between torso and brace. Topology optimization was conducted to modify the Boston brace. Three patients wearing a traditional brace and then the modified brace were examined in terms of Cobb angle. Results. For the patient with King Type III scoliosis, this modified brace was able to offer the same correction effect as the traditional brace, but the modified brace was lighter by about 12.4%, with the potential to be up to 18% lighter. Conclusion. Based on the traditional Boston brace, this FE model, combined with topology optimization, can effectively estimate redundant material distribution and accordingly custom-design a lighter brace without any loss of its corrective effect.

Collaboration


Dive into the -Sheng Chen's collaboration.

Top Co-Authors

Avatar

Cheng-Kung Cheng

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chien-Lin Liu

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Shun-Hwa Wei

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Zheng-Cheng Zhong

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chinghua Hung

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Ming-Lun Hsu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Shih-Liang Shih

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Ching-Hsuan Chen

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chung-Huang Yu

National Yang-Ming University

View shared research outputs
Researchain Logo
Decentralizing Knowledge