Chen Wen
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chen Wen.
Advances in Atmospheric Sciences | 2004
Huang Ronghui; Chen Wen; Yang Bangliang; Zhang Renhe
Recent advances in studies on the interaction between the East Asian monsoon and the ENSO cycle are reviewed in this paper. Through the recent studies, not only have the responding features and processes of the East Asian winter and summer monsoon circulation anomalies and summer rainfall anomalies in East Asia to the ENSO cycle during its different stages been understood further, but also have the thermal and dynamic effects of the tropical western Pacific on the ENSO cycle been deeply analyzed from the observational facts and dynamic theories. The results of observational and theoretical studies showed that the dynamical effect of the atmospheric circulation and zonal wind anomalies in the lower troposphere over the tropical western Pacific on the ENSO cycle may be through the excitation of the equatorial oceanic Kelvin wave and Rossby waves in the equatorial Pacific. These studies demonstrated further that the ENSO cycle originates from the tropical western Pacific. Moreover, these recent studies also showed that the atmospheric circulation and zonal wind anomalies over the tropical western Pacific not only result from the air-sea interaction over the tropical western Pacific, but are also greatly influenced by the East Asian winter and summer monsoons. Additionally, the scientific problems in the interaction between the Asian monsoon and the ENSO cycle which should be studied further in the near future are also pointed out in this paper.
Science China-earth Sciences | 2007
Wei Ke; Chen Wen; Huang Ronghui
The research on climate change in polar regions, especially on the role of polar in the global climate system, has gain unprecedented level of interest. It has been the key scientific issue of the International Polar Year program (IPY, 2007–2008). In this paper, we dealt with the debate upon the breakup time of the stratospheric polar vortex in boreal spring. An observational study of the relation between stratospheric polar vortex breakup and the extra-tropical circulation was performed. The mean breakup date—when the winter westerly at the core of polar jet turns to summer easterly—is about April 10. The breakup time has large interannual variation with a time span of about 2 months. It also has a long-term trend with the 1990s and 2000s witnessing more and more late breakups of polar vortex. Composite of wind speed at the core of polar jet for the extremely early and late breakup years shows that late years have two periods of westerly weakening while early breakup years have only one. The first weakening in the late years happens in middle January with wind speed dropping sharply from more than 40 m s−1 to about 15 m s−1. This is accompanied with anomalous activities of planetary waves in both stratosphere and troposphere; while the second weakening in the late breaking years is mainly the results of diabatic heating with very weak wave activities. In early breakup years, the transition from westerly to easterly is rapid with wind speed dropping from more than 30 m s−1 to less than −10 m s−1 within a month. This evolution is associated with a strong bidirectional dynamical coupling of the stratosphere and troposphere. The circulation anomalies at low troposphere are also analyzed in the extremely early and late breakup years. It shows that there are significant differences between the two kinds of extreme years in the geopotential height and temperature composite analysis, indicating the dynamical coupling of stratosphere and troposphere with the evolution of stratospheric polar vortex.
Advances in Atmospheric Sciences | 2006
Wei Ke; Chen Wen; Huang Ronghui
The new version (version 8) TOMS (Total Ozone Mapping Spectrometer) ozone and noontime erythemal ultraviolet (UV) irradiance products are used to analyze their long-term changes in this paper. It is shown that the summer UV irradiance has increased significantly from Central China to the northern and western parts of China, especially in Central China near Chongqing, Shaanxi, and Hubei provinces; whereas the UV irradiance has decreased significantly in the southern part of China, especially in South China. In July, when UV irradiance is at its maximum and hence when the most serious potential damage may happen, the results indicate an increase in the UV irradiance in Central China and the Yangtze River-Huaihe River valley and a decrease in South China and the eastern part of North China. At the same time, the total ozone amount is lower over China in summer with the most serious depletion occurring in Northeast China and Northwest China. It is found that the thinning of the ozone layer is not the main reason for the UV irradiance trend in the eastern and southern parts of China, but that the rainfall and the related cloud variations may dominate the long-term changes of the UV irradiance there. In addition, the future UV irradiance trend in China is also estimated.
Science China-earth Sciences | 2012
Lan Xiaoqing; Chen Wen; Wang Lin
Based on the ERA-40 reanalysis data from the European Centre for Medium-Range Weather Forecasts and the output of ECHAM5/MPI-OM, this study investigated the interactions between the quasi-stationary planetary wave (SPW) and mean flow, and their responses to El Niño-Southern Oscillation (ENSO) events in the northern hemispheric stratosphere. Results show that the activity of SPW is the strongest in winter, when the SPW propagates along the polar waveguide into the stratosphere and along the low-latitude waveguide to the subtropical tropopause. The analysis of three dimensional SPW structure indicates that the main sources of SPW activity are located over the Eurasian continent and the North Pacific north of 45°N. On the one hand, the two waveguides of the SPW reflect the influence of mean flow on the propagation of the SPW. On the other hand, the upward propagating SPW can interact with the stratospheric mean flow, leading to deceleration of the zonal mean westerly. Furthermore, the SPW exhibits clear responses to ENSO events. During El Niño winters, the SPW in the stratosphere tends to propagate more upward and poleward. Its interactions with mean flow can induce a dipole pattern in zonal mean zonal winds, with accelerated westerly winds at low-middle latitudes and decelerated westerly winds at high latitudes. The ECHAM5/MPI-OM model reproduces the climatology of the SPW well. Although the simulated SPW is slightly weaker than the observations in the stratosphere, the model’s performance has significant improvements compared with other GCMs used in previous studies. However, there are still some problems in the responses of the SPW to ENSO in the model. Although the model reproduces the responses of both the amplitude and the SPW-mean flow interactions to ENSO well in the troposphere, the stratospheric responses are quite weak. Therefore, further studies are needed to improve the simulation of the stratospheric atmospheric circulation and related dynamical processes.
Atmospheric and Oceanic Science Letters | 2015
Huangfu Jingliang; Huang Ronghui; Chen Wen
Abstract An interdecadal shift in the onset date of the South China Sea summer monsoon (SCSSM) is identified during the late 1990s by using the European Centre for Medium-Range Weather Forecasts Interim Reanalysis dataset. The mean onset date was brought forward by two pentads during 1999–2013 compared to that during 1979–1998. The large-scale atmospheric and oceanic change associated with this shift exhibits a significant interdecadal variation signal around 1998/1999, indicating that the shift during the late 1990s is robust. Different from the well-known mid-1990s shift, this shift carried more important systematical significance. Diagnostic analysis suggests that the earlier outbreak of the SCSSM was due to the interdecadal warming of the warm pool, which brought stronger convection anomalies and led to a weak western Pacific subtropical high (WPSH) during boreal spring (March–May). The earlier retreat of the WPSH was a direct cause of this shift.
Atmospheric and Oceanic Science Letters | 2015
Mei Shuang-Li; Chen Wen; Chen Shang-Feng
Abstract The relationship between the summer northernmost position of southerly wind and precipitation over East China is investigated. The northern limit of summer southerly wind index (INLSSW) over East China is defined as the latitude where the zonal-averaged (105–120°E) low-level meridional wind is equal to zero. Results show that there is a significant negative (positive) correlation between INLSSW and summer precipitation over the Yangtze River (North China) region. Thus, the proposed INLSSW may have implications for the prediction of summer precipitation anomalies in these regions. In positive INLSSW years, a cyclonic circulation anomaly is observed over the tropical western North Pacific and an anticyclonic circulation anomaly is seen over the subtopics of East China, accompanied by southerly anomalies over East China. This leads to above-normal moisture penetrating into the northern part of East China. In addition, significant upward (downward) motion anomalies can be found over the North China (Yangtze River) region. As a result, there are significant positive (negative) precipitation anomalies over the North China (Yangtze River) region. Further examination shows that sea surface temperature anomalies over the tropical eastern Pacific and Indian Ocean both contribute to the formation of INLSSW-related circulation anomalies over the topical western North Pacific.
Advances in Atmospheric Sciences | 2000
Chen Wen; Hans-F. Graf; Huang Ronghui
Advances in Atmospheric Sciences | 2002
Chen Wen; Huang Ronghui
Climatic and Environmental Research | 2006
Kang Li; Chen Wen; Wei Ke
Advances in Earth Science | 2009
Chen Wen; Wei Ke