Chenchen Cui
Northwest A&F University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chenchen Cui.
Molecular Reproduction and Development | 2012
Pengfei Lin; Yanzhou Yang; Xiao Li; Fenglei Chen; Chenchen Cui; Linyong Hu; Qian Li; Wei Liu; Yaping Jin
Follicular atresia is primarily induced by granulosa cell apoptosis, but description of the apoptotic pathway in granulosa cells is incomplete. In this study, we explored the possibility that endoplasmic reticulum (ER) stress could be involved in granulosa cell apoptosis during goat follicular atresia. Immunohistochemical analysis revealed that DNA damage‐inducible transcript 3 (DDIT3) and glucose‐regulated protein 78 (Grp78) were observed in scattered apoptotic granulosa cells of atretic follicles. Grp78 and DDIT3 mRNA and protein were upregulated in granulosa cells during follicular atresia, although DDIT3 was not significantly different between early atretic and progressed atretic follicles. Spontaneous apoptosis was also observed in vitro in granulosa cells induced by serum deprivation or by the ER stress agent tunicamycin, both inducing similar increases in DDIT3 mRNA. Activating transcription factor‐6 (ATF6) and ATF4 mRNAs were significantly increased during granulosa cell apoptosis in vivo; in contrast to ATF6, ATF4 mRNA was attenuated after 16 hr of culture despite the persistence of ER stress. Taken together, ER stress‐dependent DDIT3 pathways may play an important role in the regulation of selective granulosa cell apoptosis in goat ovaries during early follicular atresia. Serum deprivation could also increase apoptosis of cultured granulosa cells through the ER stress pathway as both ATF6 and PERK/eIF2α/ATF4 signaling have been implicated in the granulosa cell apoptosis of atretic follicles. Mol. Reprod. Dev. 79:423–432, 2012.
Genome Biology | 2017
Yuanpeng Gao; Haibo Wu; Yongsheng Wang; Xin Liu; Linlin Chen; Qian Li; Chenchen Cui; Xu Liu; Jingcheng Zhang; Yong Zhang
BackgroundThe CRISPR-Cas9 system is a widely utilized platform for transgenic animal production in various species, although its off-target effects should be addressed. Several applications of this tool have been proposed in model animals but remain insufficient for transgenic livestock production.ResultsHere, we report the first application of single Cas9 nickase (Cas9n) to induce gene insertion at a selected locus in cattle. We identify the main binding sites of a catalytically inactive Cas9 (dCas9) protein in bovine fetal fibroblast cells (BFFs) with chromatin immunoprecipitation sequencing (ChIP-seq). Subsequently, we demonstrate that a single Cas9n-induced single-strand break can stimulate the insertion of the natural resistance-associated macrophage protein-1 (NRAMP1) gene with reduced, but still considerable, off-target effects. Through somatic cell nuclear transfer, we finally obtain transgenic cattle with increased resistance to tuberculosis.ConclusionsOur results contribute to the development of CRISPR-Cas9 system for agriculture applications.
Scientific Reports | 2015
Chenchen Cui; Yujie Song; Jun Liu; Hengtao Ge; Qian Li; Hui Huang; Linyong Hu; Hongmei Zhu; Yaping Jin; Yong Zhang
β-Lactoglobulin (BLG) is a major goat’s milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.
Journal of Reproduction and Development | 2013
Yanzhou Yang; Yaping Jin; Amanda C. Martyn; Pengfei Lin; Yujie Song; Fenglei Chen; Linyong Hu; Chenchen Cui; Xiao Li; Qian Li; Ray Lu; Aihua Wang
Abstract Luman/CREB3 recruitment factor (LRF or CREBRF) was identified as a regulator of Luman (or CREB3) that is involved in the unfolded protein response during endoplasmic reticulum stress. Luman is implicated in a multitude of functions ranging from viral infection and immunity to cancer. The biological function of LRF, however, is unknown. In this paper, we report that uteri of pregnant mice and embryos displayed enhanced LRF expression at all stages, and the expressed LRF was found to be localized specifically at implantation sites. On the other hand, uteri of mice induced for delayed implantation or pseudopregnant mice showed low levels of LRF expression, suggesting that LRF mediates uterine receptivity during implantation. Further, expression of LRF was found to be modulated by steroid hormones such as progesterone and estradiol. This study thereby identifies a potential role for LRF in the process of implantation in uteri and development of preimplantation embryos in mice.
Journal of Immunoassay & Immunochemistry | 2013
Yanzhou Yang; Yaping Jin; Pengfei Lin; Linyong Hu; Chenchen Cui; Xiao Li; Qian Li; Aihua Wang
In this article, the expression patterns of LRF in the mouse oviduct, uterus, and ovary were checked during estrous cycle. The expression of LRF mRNA and protein were remarkably changed in the ovary, oviduct, and uterus at four phases. LRF immunostaining was detected in the follicle from primary to antral follicle, luminal and glandular epithelial cells of the uterus, and cilia of the ciliated cells of the oviduct at all phase. Our findings suggested that LRF may be related to the processes of development and maturation of oocyte, gamete transport, and the development of early embryo.
Scientific Reports | 2016
Yan Luo; Yongsheng Wang; Jun Liu; Chenchen Cui; Yongyan Wu; Hui Lan; Qi Chen; Xu Liu; Fusheng Quan; Zekun Guo; Yong Zhang
Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.
Cellular Reprogramming | 2014
Qian Li; Yongsheng Wang; Li-Jun Wang; Hui Zhang; Ruizhe Li; Chenchen Cui; Wz Li; Yong Zhang; Yaping Jin
Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, p<0.05), compact morulae formation (60.83 vs. 51.30%, p<0.05), and the blastomere apoptosis index (3.70 ± 1.41 vs. 4.43% ± 1.65, p<0.05) of bovine SCNT embryos. However, vitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, p<0.05) on day 7 and the hatching blastocysts formation rate on day 9 (26.51 vs. 50.65%, p<0.05) compared with that of the untreated group. Vitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.
Theriogenology | 2013
Xiangli Lan; Yaping Jin; Yanzhou Yang; Pengfei Lin; Linyong Hu; Chenchen Cui; Qian Li; Xiao Li; Aihua Wang
Luman (also known as LZIP and CREB3) is a basic leucine zipper transcription factor of the cAMP response element-binding protein/activating transcription factor gene family. Although Luman had specific roles near termination of Drosophila embryogenesis, the physiological functions of Luman in female mammals have apparently not been reported. Therefore, our objective was to investigate the spatiotemporal expression and regulation of Luman in the mouse uterus during the peri-implantation period. Luman protein was clearly present in the luminal and glandular epithelium on days 1 to 4 of pregnancy (day 1, presence of a vaginal plug) and was observed in decidual cells on day 6 of pregnancy. Expression had progressively increased to day 7 when the second decidual zone was formed. On day 8, apoptosis of the decidualized cells was present, and Luman protein expression was decreased (in close association with decidualization). Luman protein was also present in decidual cells of the artificially decidualized uterus. The expression of Luman was regulated by an activated embryo (according to its expression patterns during pseudopregnancy and delayed implantation). Furthermore, expression of Luman was induced by estrogen in ovariectomized mice. We have concluded that Luman might have important roles in embryo implantation and decidualization.
Protein Expression and Purification | 2015
Yujie Song; Chenchen Cui; Hongmei Zhu; Qian Li; Fan Zhao; Yaping Jin
Engineered zinc-finger nucleases (ZFNs) have been widely used for precise genome editing. ZFNs can induce DNA double-strand breaks at specific genomic locations and drive the introduction of an insertion or deletion of base pairs at the targeted region, consequently resulting in a loss-of-function mutation. In this study, we investigated the cloning, expression and purification of ZFN fusion proteins targeting the goat beta-lactoglobulin (BLG) gene and detected the cleavage activities of these ZFN proteins in vitro and in cells, respectively. The results showed that the pET-BLG-LFN and pET-BLG-RFN prokaryotic expression plasmids can be constructed correctly and expressed efficiently in Escherichia coli BL21 (DE3) cells to produce the 6× His-tagged ZFN proteins that can be purified by Ni-IDA-Sefinose Column. The predetermined sequence of BLG can be recognized and excised both in vitro and in goat fibroblasts by the purified ZFN fusion proteins, which demonstrated that the purified ZFN fusion proteins can be used as gene modification tools to knock out the BLG gene. Furthermore, these results lay the foundation for eliminating allergen BLG from goat milk and improving the quality of goat milk products.
Biotechnology Letters | 2012
Linyong Hu; Chenchen Cui; Yujie Song; Xiangguo Wang; Yaping Jin; Aihua Wang; Yong Zhang
AbstractcDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.