Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheng Chaw is active.

Publication


Featured researches published by Cheng Chaw.


Journal of Microencapsulation | 2003

Water-soluble betamethasone-loaded poly(lactide-co-glycolide) hollow microparticles as a sustained release dosage form

Cheng Chaw; Yi-yan Yang; I J Lim; T T Phan

In this study, betamethasone disodium phosphate-loaded microparticles were fabricated for sustained release using poly(lactide-co-glycolide) (PLGA) by spray drying and emulsion solvent evaporation/extraction techniques. Encapsulation efficiencies ranged from 59-80% using a water-in-oil-in-oil (W/O/O) double emulsion technique and more than 90% for a spray-drying method were obtained. This was a significant improvement compared to fabrication by a water-in-oil-in-water (W/O/W) double emulsion process, which had an encapsulation efficiency of less than 15%. Multiple-phase and biphasic release profiles were observed for microparticles of PLGA 50/50 and PLGA of higher lactide contents, respectively. The PLGA 50/50 hollow microparticles fabricated using the W/O/O double emulsion technique provided a sustained release of betamethasone disodium phosphate over 3 weeks.


European Journal of Pharmaceutical Sciences | 2013

Compare and contrast the effects of surfactants (Pluronic®F-127 and Cremophor®EL) and sugars (β-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme

Rita Rochdy Haj-Ahmad; Amal Elkordy; Cheng Chaw; Adrian Moore

The stabilisation of proteins using different excipients in dried forms for possible therapeutic use is extensively studied. However, the effects of excipients on proteins in crystallised forms are sparsely documented. Therefore, the influences of PluronicF-127 and CremophorEL (as surfactants) and β-cyclodextrin and inulin (as sugars) on stability and biological activity of lysozyme, a model protein, in spray dried and crystallised forms were investigated. Spray dried and crystallised lysozyme were prepared in absence and presence of the mentioned excipients in a concentration of 0.05% w/v. The protein formulations were characterised in both solution state (using biological assay, particle size analysis and protein concentration determination) and solid state (employing yield determination, scanning electron microscopic (SEM) examination, Fourier transform infrared (FT-IR) spectroscopy for secondary structure analysis and Differential Scanning Calorimetry (DSC) for thermal study). Also, protein samples were assayed for their biological activities after exposing to storage stability study for 20 weeks in solid states at 24 °C/76% relative humidity (RH) and in aqueous states at 24 °C. The results showed that lysozyme crystals with CremophorEL, PluronicF-127, β-cyclodextrin and inulin maintained protein thermal stability (as indicated by DSC) to greater extent compared with spray dried protein formulations. Also, PluronicF-127 was competent to recover 100% lysozyme from crystallisation protein solutions (as confirmed by yield determination); this surfactant was able to prevent aggregate formation within spray dried lysozyme (as demonstrated by particle size analysis). The presence of PluronicF-127, β-cyclodextrin and inulin preserved the protein biological activity in freshly prepared spray dried and crystallised samples. PluronicF-127 was competent to protect lysozyme in both spray dried and crystallised forms after storage. PluronicF-127 has proved to be a promising protectant of proteins. The improved stability of the spray dried and crystallised protein containing PluronicF-127 shows promise for delivery of proteins via inhalation (in a spray dried form which has particle size range suitable for inhalation as revealed by particle size analysis and SEM) and injectable routes (in spray dried and crystallised forms). The way excipients react with proteins is different in the case of spray drying and crystallisation techniques, hence the choice of the additives and the processing techniques play a great role in controlling protein properties, activity and stability as shown in this study.


Ecancermedicalscience | 2014

The role of palliative radiotherapy for haemostasis in unresectable gastric cancer: a single-institution experience.

Cheng Lee Chaw; Paddy G Niblock; Cheng Chaw; Douglas J Adamson

Purpose: To evaluate the outcomes of patients with gastric cancer bleeding who had been treated with palliative radiotherapy with haemostatic intent. Methods and materials: Fifty-two gastric cancer patients aged 52–92 years (median 78 years) with active bleeding or anaemia resulting from inoperable gastric cancer were treated with short-course radiotherapy. Responses to radiotherapy treatment were evaluated based on the changes of haemoglobin level, number of transfusions received before and after radiotherapy, and overall median survival. Results: Thirty-nine (75%) patients received single 8 Gy fraction, and 13 (25%) patients received 20 Gy in five daily fractions. The need for transfusion was evaluable in 44 patients, and the response rate was 50%, with less requirement for blood transfusions within four weeks of radiotherapy. There was also an increase in mean haemoglobin level (0.66 ± 1.12 g/dl, p < 0.01) after radiotherapy in 35 evaluable patients. The overall median survival (calculated from last day of treatment to date of death) was 160 days (95% CI of 119–201 days), making actuarial 12-month survival 15%. Conclusion: Palliative short-course radiotherapy is a reasonably effective treatment that can provide durable palliation of bleeding in gastric cancer.


Drug Development and Industrial Pharmacy | 2012

Formulation and in vitro evaluation of self-emulsifying formulations of cinnarizine

Shyam Vithlani; Shruthi Sarraf; Cheng Chaw

The main objectives of this study were to improve the aqueous solubility and to modify in vitro dissolution profile of hydrophobic drug using self-emulsifying drug delivery systems (SEDDS). SEDDS were formulated using Capmul PG-12, Cremophor RH 40 and Tween 20 at different weight ratios and incorporated with Cinnarizine. The drug incorporation into pre-concentrate and drug solubility in phosphate buffer (pH 7.2) were investigated. In addition, the mean droplet size and drug release profile of the SEDDS were also determined. The drug incorporation was over 120 mg per 0.5 g pre-concentrate regardless of the composition of the formulations. The solubility of Cinnarizine in phosphate buffer (pH 7.2) was at least 1500 μM in the SEDDS. Formulations with only 10% w/w Capmul PG-12 were less than 20 nm in mean diameter while those produced with at least 20% w/w Capmul PG-12 were more than 100 nm regardless of the ratios of Cremophor RH 40 to Tween 20. SEDDS showed a significant increase of the mean percentage drug release than pure drug (p < 0.0001). In general, the SEDDS with 30% w/w of Capmul PG-12 provided the greatest enhancement in drug solubility in phosphate buffer as well as rapid drug release despite forming larger droplets upon emulsification. The combination of Capmul PG-12, Tween 20 and Cremophor RH 40 can produce SEDDS which can be used as an alternative dosage form for poorly water soluble drug.


Pharmaceutical Development and Technology | 2013

Effect of formulation compositions on niosomal preparations

Cheng Chaw; Kwong Yioung Ah Kim

This study was aimed to investigate the effects of molar ratio of cholesterol to Span 60 and stabilizers (Solutol HS 15 or dicetyl phosphate (DCP)) on the entrapment of methylene blue, a model hydrophilic drug. The niosomes were prepared by the film hydration method and characterized for drug entrapment efficiency (EE), vesicle size, zeta potential and thermal properties of niosomal membrane. It was found that niosomal vesicles possessed median diameter ranging from 0.35 to 1.85 μm. The niosomes that were formulated with lower molar ratios of cholesterol to Span 60 of 0.33 and 0.50 produced significantly higher EE with both stabilizers when compared to cholesterol to Span 60 molar ratios of 1.0 and above (p < 0.05). The EE of niosomes stabilized with DCP was significantly higher (p < 0.05) than those prepared with Solutol HS 15 except at a molar ratio of cholesterol to Span 60 of 0.33. In conclusion, with low molar ratios of cholesterol to Span 60, more drugs could be entrapped within the niosomes regardless of the type of stabilizers. Furthermore, EE and median diameter of niosomes containing DCP were higher than those stabilized with Solutol HS 15.


Journal of Microencapsulation | 2009

Ciclosporin-loaded poly(lactide) microparticles: effect of TPGS.

Eni Yeung; Cheng Chaw

Abstract The properties of spray dried PLA microparticles were affected by the choice of solvents, amount of ciclosporin and TPGS added. Ethyl acetate formed microparticle with smooth surface when compared to those produced by dichloromethane. The results of FTIR have not shown chemical interaction amongst PLA, ciclosporin and TPGS while thermal analysis showed physical interactions amongst these components. TPGS was found to lower Tg value of PLA by exerting a plasticizing effect while ciclosporin reverted this effect. When the content of TPGS increased from 2% (w/w) to 10% (w/w), the microparticles tended to agglomerate due to the lowering of the polymer Tg values at the employed spray drying temperature. In addition, a lesser amount of ciclosporin was found at the surface of the microparticle and resulted in smaller initial release of ciclosporin. When 2% (w/w) TPGS was used, the initial release of ciclosporin was enhanced and the microparticles formed were not agglomerated.


Journal of Chromatography B | 2003

Simple liquid chromatographic method for the determination of physostigmine and its metabolite eseroline in rat plasma: application to a pharmacokinetic study

Bin Zhao; Shabbir Moochhala; Cheng Chaw; Yi Yan Yang

Physostigmine, an anticholinergic drug, and its metabolite eseroline can be quantitated by high-performance liquid chromatography (HPLC) with photodiode-array detection. After addition of the structurally related internal standard (-)-N-methylphysostigmine, rat plasma samples were extracted and cleaned using a Varian Bond Elut C(18) column. The methanol-ammonia (98:2) eluate was evaporated to dryness and reconstituted with 0.01 M sodium dihydrogenphosphate (pH 3). Physostigmine and eseroline were separated on an Alltech Ultrasphere Silica column (250x4.6 mm I.D.; particle size 5 micrometer) at a flow-rate of 1 ml/min, with a mobile phase of 0.01 M sodium dihydrogenphosphate (pH 3)-acetonitrile (85:15). The limits of detection were 10 and 25 ng/ml for physostigmine and eseroline, respectively; the signal-to-noise ratio for this concentration was approximately 3:1. Spiked rat plasma containing 0.1-2.5 microgram/ml of physostigmine and eseroline gives good linearity. The average percentage recovery from five spiked plasma samples was 88.0+/-2.9 and 61.1+/-5.6% for physostigmine and eseroline, respectively. Within the concentration range 0.1-2.5 microgram/ml, the within-day precision was 1.9-8.3 and 3.0-7.7% for physostigmine and eseroline, respectively, and the between-day precision was 4.1-9.3 and 3.7-11% for physostigmine and eseroline, respectively. The method is rapid, simple and reliable, thus it is suitable for pharmacokinetic studies in the rat.


Drug Development and Industrial Pharmacy | 2015

Incorporation of calcium salts into xanthan gum matrices: hydration, erosion and drug release characteristics

Emma Groves; Cheng Chaw

Abstract Xanthan gum (XG), a hydrophilic biopolymer with modified release properties, was used to produce directly compressed matrix tablets containing a model drug, sodium p-aminosalicylate. Three formulations were prepared, each containing a different calcium dihydrate salt: calcium chloride, calcium sulfate or dibasic calcium phosphate. The aim of the investigation was to relate the calcium ion content and solubility of the calcium salt to the in vitro drug release profile of the xanthan matrices. Tablet hydration, erosion and drug release were determined in distilled water using the British Pharmacopoeia (BP) paddle method. The data showed that the overall drug release was the greatest with addition of calcium sulfate, followed by calcium chloride and dibasic calcium phosphate. The chloride salt formulation displayed the greatest percentage erosion due to rapid mass loss during the initial phase, followed by those with sulfate or phosphate salts. As xanthan gel viscosity increased and drug release was also found to be lower, it can be concluded that drug release is influenced by the solubility of the salt present in the formulation, since these parameters determine the viscosity and structure of the gel layer.


Drug Development and Industrial Pharmacy | 2014

Production and characterization of pellets using Avicel CL611 as spheronization aid

Sin Yee Puah; Hsiu Ni Yap; Cheng Chaw

Abstract Purpose: The study looked into the feasibility of producing pellet using Avicel CL611 as spheronization aid by the extrusion/spheronization technique. Methods: Pellets were formulated to contain either 20% or 40% Avicel CL611 and lactose monohydrate as the other sole ingredient. Water is used as liquid binder. Quality of pellets and extrudates were analyzed for size distribution, shape, surface tensile strength and disintegration profile. Results: More water was needed when higher Avicel CL611 fraction was used during the production of pellets. The pellets of larger size were obtained by increasing the water content. Pellets with aspect ratios of ∼1.1 were produced with high spheronization speed at short residence time. Higher tensile strength was achieved when increasing the water content and the fraction of Avicel CL611 during pellet production. These pellets also took longer time to disintegrate, nonetheless all the pellets disintegrated within 15 min. A positive linear relationship was obtained between the tensile strength and time for pellets to disintegrate. Conclusion: Strong but round pellets that disintegrate rapidly could be produced with Avicel CL611 as spheronization aid using moderately soluble compounds such as lactose.


Drug Development and Industrial Pharmacy | 2013

Preparation and characterization of enteric microparticles by coacervation

Steffi Thomas; Yin Ning Chong; Cheng Chaw

The aim of this study was to produce cinnarizine loaded Eudragit® L100-55 microparticles by coacervation technique in order to achieve pH responsive drug release using hydroxypropyl methycellulose (HPMC) as stabilizer. The effect of enteric polymer: HPMC ratio on properties of microparticles was investigated with regard to particle size distribution, morphology, yield, encapsulation efficiency, in vitro drug release profiles and interaction between cinnarizine and Eudragit® L100-55. High drug encapsulation efficiency was seen in all microparticles. Particle diameter increased when the enteric polymer content was higher relative to HPMC. In vitro dissolution studies demonstrated that the drug release from the microparticles was dependent upon enteric polymer: HPMC ratio and particle size distribution. At the ratio of at least 3.75:1 of enteric polymer: HPMC, drug release was suppressed most significantly in low pH (hydrochloric acid as medium) while rapid drug release was observed in pH 7.4.

Collaboration


Dive into the Cheng Chaw's collaboration.

Top Co-Authors

Avatar

Amal Elkordy

University of Sunderland

View shared research outputs
Top Co-Authors

Avatar

Adrian Moore

University of Sunderland

View shared research outputs
Top Co-Authors

Avatar

Lee Williams

University of Sunderland

View shared research outputs
Top Co-Authors

Avatar

Mark Carlile

University of Sunderland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhao

Defence Science and Technology Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge