Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheng-Hsun Ho is active.

Publication


Featured researches published by Cheng-Hsun Ho.


Cell | 2009

CHL1 Functions as a Nitrate Sensor in Plants

Cheng-Hsun Ho; Shan-Hua Lin; Heng-Cheng Hu; Yi-Fang Tsay

Ions serve as essential nutrients in higher plants and can also act as signaling molecules. Little is known about how plants sense changes in soil nutrient concentrations. Previous studies showed that T101-phosphorylated CHL1 is a high-affinity nitrate transporter, whereas T101-dephosphorylated CHL1 is a low-affinity transporter. In this study, analysis of an uptake- and sensing-decoupled mutant showed that the nitrate transporter CHL1 functions as a nitrate sensor. Primary nitrate responses in CHL1T101D and CHLT101A transgenic plants showed that phosphorylated and dephosphorylated CHL1 lead to a low- and high-level response, respectively. In vitro and in vivo studies showed that, in response to low nitrate concentrations, protein kinase CIPK23 can phosphorylate T101 of CHL1 to maintain a low-level primary response. Thus, CHL1 uses dual-affinity binding and a phosphorylation switch to sense a wide range of nitrate concentrations in the soil, thereby functioning as an ion sensor in higher plants. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


FEBS Letters | 2007

Nitrate transporters and peptide transporters

Yi-Fang Tsay; Chi Chou Chiu; Chyn Bey Tsai; Cheng-Hsun Ho; Po Kai Hsu

In higher plants, two types of nitrate transporters, NRT1 and NRT2, have been identified. In Arabidopsis, there are 53 NRT1 genes and 7 NRT2 genes. NRT2 are high‐affinity nitrate transporters, while most members of the NRT1 family are low‐affinity nitrate transporters. The exception is CHL1 (AtNRT1.1), which is a dual‐affinity nitrate transporter, its mode of action being switched by phosphorylation and dephosphorylation of threonine 101. Two of the NRT1 genes, CHL1 and AtNRT1.2, and two of the NRT2 genes, AtNRT2.1 and AtNRT2.2, are known to be involved in nitrate uptake. In addition, AtNRT1.4 is required for petiole nitrate storage. On the other hand, some members of the NRT1 family are dipeptide transporters, called PTRs, which transport a broad spectrum of di/tripeptides. In barley, HvPTR1, expressed in the plasma membrane of scutellar epithelial cells, is involved in mobilizing peptides, produced by hydrolysis of endosperm storage protein, to the developing embryo. In higher plants, there is another family of peptide transporters, called oligopeptide transporters (OPTs), which transport tetra/pentapeptides. In addition, some OPTs transport GSH, GSSH, GSH conjugates, phytochelatins, and metals.


Science | 2014

Border control--a membrane-linked interactome of Arabidopsis.

Alexander M. Jones; Yuan Hu Xuan; Meng Xu; Rui-Sheng Wang; Cheng-Hsun Ho; Sylvie Lalonde; Chang Hun You; Maria I. Sardi; Saman A. Parsa; Erika Smith-Valle; Tianying Su; Keith A. Frazer; Guillaume Pilot; Réjane Pratelli; Guido Grossmann; Biswa R. Acharya; Heng Cheng Hu; Florent Villiers; Chuanli Ju; Kouji Takeda; Zhao Su; Qunfeng Dong; Sarah M. Assmann; Jin Chen; June M. Kwak; Julian I. Schroeder; Réka Albert; Seung Y. Rhee; Wolf B. Frommer

Degrees of Separation Proteins embedded in membranes represent an interesting point of communication between the cell and its environment, but their localization to membranes can make them difficult to study. Jones et al. (p. 711) found an approach to catalog thousands of interactions involving membrane proteins and membrane-associated signaling machinery—including many previously uncharacterized proteins. With a focus on the model plant Arabidopsis, several of the identified interactions fill gaps in important signal transduction chains, while others point to functions for enigmatic unknown proteins. Amembrane and signaling protein interaction network for gene discovery and hypothesis generation is identified in Arabidopsis. Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 × 106 pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, >99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split–green fluorescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms.


Annual Review of Plant Biology | 2011

Integration of Nitrogen and Potassium Signaling

Yi-Fang Tsay; Cheng-Hsun Ho; Hui-Yu Chen; Shan-Hua Lin

Sensing and responding to soil nutrient fluctuations are vital for the survival of higher plants. Over the past few years, great progress has been made in our understanding of nitrogen and potassium signaling. Key components of the signaling pathways including sensors, kinases, miRNA, ubiquitin ligases, and transcriptional factors. These components mediate the transcriptional responses, root-architecture changes, and uptake-activity modulation induced by nitrate, ammonium, and potassium in the soil solution. Integration of these responses allows plants to compete for limited nutrients and to survive under nutrient deficiency or toxic nutrient excess. A future challenge is to extend the present fragmented sets of data to a comprehensive signaling network. Then, such knowledge and the accompanying molecular tools can be applied to improve the efficiency of nutrient utilization in crops.


Current Opinion in Plant Biology | 2010

Nitrate, ammonium, and potassium sensing and signaling

Cheng-Hsun Ho; Yi-Fang Tsay

Plants acquire numerous nutrients from the soil. In addition, nutrients elicit many physiological and morphological responses especially in roots. Recently, there has been significant progress in identifying the sensing and regulatory mechanisms of several essential nutrients. In this review, we describe the newly identified signaling components of nitrate, ammonium, and potassium, focusing specifically on the initial sensing steps.


Current Opinion in Plant Biology | 2013

In vivo biochemistry: Applications for small molecule biosensors in plant biology

Alexander M. Jones; Guido Grossmann; Jonas åH Danielson; Davide Sosso; Li Qing Chen; Cheng-Hsun Ho; Wolf B. Frommer

Revolutionary new technologies, namely in the areas of DNA sequencing and molecular imaging, continue to impact new discoveries in plant science and beyond. For decades we have been able to determine properties of enzymes, receptors and transporters in vitro or in heterologous systems, and more recently been able to analyze their regulation at the transcriptional level, to use GFP reporters for obtaining insights into cellular and subcellular localization, and tp measure ion and metabolite levels with unprecedented precision using mass spectrometry. However, we lack key information on the location and dynamics of the substrates of enzymes, receptors and transporters, and on the regulation of these proteins in their cellular environment. Such information can now be obtained by transitioning from in vitro to in vivo biochemistry using biosensors. Genetically encoded fluorescent protein-based sensors for ion and metabolite dynamics provide highly resolved spatial and temporal information, and are complemented by sensors for pH, redox, voltage, and tension. They serve as powerful tools for identifying missing processes (e.g., glucose transport across ER membranes), components (e.g., SWEET sugar transporters for cellular sugar efflux), and signaling networks (e.g., from systematic screening of mutants that affect sugar transport or cytosolic and vacuolar pH). Combined with the knowledge of properties of enzymes and transporters and their interactions with the regulatory machinery, biosensors promise to be key diagnostic tools for systems and synthetic biology.


eLife | 2013

Fluorescent sensors reporting the activity of ammonium transceptors in live cells

Roberto De Michele; Cindy Ast; Dominique Loqué; Cheng-Hsun Ho; Susana L. A. Andrade; Viviane Lanquar; Guido Grossmann; Soeren Gehne; Michael U. Kumke; Wolf B. Frommer

Ammonium serves as key nitrogen source and metabolic intermediate, yet excess causes toxicity. Ammonium uptake is mediated by ammonium transporters, whose regulation is poorly understood. While transport can easily be characterized in heterologous systems, measuring transporter activity in vivo remains challenging. Here we developed a simple assay for monitoring activity in vivo by inserting circularly-permutated GFP into conformation-sensitive positions of two plant and one yeast ammonium transceptors (‘AmTrac’ and ‘MepTrac’). Addition of ammonium to yeast cells expressing the sensors triggered concentration-dependent fluorescence intensity (FI) changes that strictly correlated with the activity of the transporter. Fluorescence-based activity sensors present a novel technology for monitoring the interaction of the transporters with their substrates, the activity of transporters and their regulation in vivo, which is particularly valuable in the context of analytes for which no radiotracers exist, as well as for cell-specific and subcellular transport processes that are otherwise difficult to track. DOI: http://dx.doi.org/10.7554/eLife.00800.001


eLife | 2014

Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters

Cheng-Hsun Ho; Wolf B. Frommer

To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research. DOI:http://dx.doi.org/10.7554/eLife.01917.001


bioRxiv | 2017

Matryoshka: Ratiometric biosensors from a nested 1 cassette of green- and orange-emitting fluorescent proteins

Cindy Ast; Jessica Foret; Luke Oltrogge; Roberto De Michele; Thomas Kleist; Cheng-Hsun Ho; Wolf B. Frommer

Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO-Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.


BIO-PROTOCOL | 2016

Design and Functional Analysis of Fluorescent Nitrate and Peptide Transporter Activity Sensors in Yeast Cultures

Cheng-Hsun Ho; Wolf B. Frommer

Collaboration


Dive into the Cheng-Hsun Ho's collaboration.

Top Co-Authors

Avatar

Wolf B. Frommer

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy Ast

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander M. Jones

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Dominique Loqué

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge