Cheng-Jie Duan
Guangxi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheng-Jie Duan.
Journal of Applied Microbiology | 2009
Cheng-Jie Duan; Liang Xian; G.‐C. Zhao; Yi Feng; Hao Pang; X.‐L. Bai; Ji-Liang Tang; Q.‐S. Ma; Jia-Xun Feng
Aims: To clone and characterize genes encoding novel cellulases from metagenomes of buffalo rumens.
Current Microbiology | 2009
Hao Pang; Peng Zhang; Cheng-Jie Duan; Xin-Chun Mo; Ji-Liang Tang; Jia-Xun Feng
Metagenomics, a new research field developed over the past decade, aims to identify potential enzymes from nonculturable microbes. In this study, genes encoding three glycoside hydrolase family (GHF) 9 endoglucanases and one GHF 5 endoglucanase were cloned and identified from the metagenome of the compost soils. The shared identities between the predicted amino acid sequences of these genes and their closest homologues in the database were less than 70%. One GHF 9 endoglucanase, Umcel9B, was further characterized. The recombinant protein, Umcel9B, showed activity against carboxymethyl cellulose, indicating that Umcel9B is an endoactive enzyme. Enzymatic activity occurs optimally at a pH of 7.0 and a temperature of 25°C.
Biotechnology for Biofuels | 2014
Zheng Zhang; Jun-Liang Liu; Jianyi Lan; Cheng-Jie Duan; Qingsheng Ma; Jia-Xun Feng
BackgroundCellulose is the most abundant biomass on earth. The major players in cellulose degradation in nature are cellulases produced by microorganisms. Aerobic filamentous fungi are the main sources of commercial cellulase. Trichoderma reesei has been explored extensively for cellulase production; however, its major limitations are its low β-glucosidase activity and inefficiency in biomass degradation. The aim of this work was to isolate new fungal strains from subtropical and tropical forests in China, which produce high levels of cellulase in order to facilitate development of improved commercial cellulases.ResultsWe isolated 305 fungal strains from 330 samples collected from subtropical and tropical virgin forests in China. Of these, 31 strains were found to have Avicelase activity of more than 0.2 U/ml in liquid batch cultivation. Molecular analyses of the 31 strains based on internal transcribed spacer sequences revealed that 18 were Trichoderma and 13 were Penicillium species. The best-performing isolate was Trichoderma koningiopsis FCD3-1, which had similar Avicelase activity to T. reesei Rut-C30. Most interestingly, strain FCD3-1 exhibited extracellular β-glucosidase activity of 1.18 U/ml, which was approximately 17 times higher than that of Rut-C30. One β-glucosidase secreted by FCD3-1 was purified, and its gene was cloned and identified. The β-glucosidase belonged to glycosyl hydrolase (GH) family 3, sharing the highest identity of 94% with a GH family 3 protein from Trichoderma atroviride IMI 206040, and was designated TkBgl3A. The optimal pH and temperature of TkBgl3A were 4.5 and 65°C, respectively. The enzyme retained over 90% activity for 360 hours at pH 4.0 and 30°C, which are the usual conditions used for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. The enzyme showed significantly higher specific activity toward natural substrate cellobiose (141.4 U/mg) than toward artificial substrate p-nitrophenyl-beta-D-glucopyranoside (108.0 U/mg).ConclusionsStrains of Trichoderma and Penicillium were the predominant cellulolytic fungi in subtropical and tropical forests in China. T. koningiopsis FCD3-1 was the most efficient producer of cellulase, and also produced a high level of β-glucosidase. The high specific activity toward cellobiose and stability under SSF conditions of the purified β-glucosidase from FCD3-1 indicates its potential application in SSF of cellulose to bioethanol.
Applied and Environmental Microbiology | 2010
Cheng-Jie Duan; Jun-Liang Liu; Xi Wu; Ji-Liang Tang; Jia-Xun Feng
ABSTRACT Endoglucanase C5614-1 comprises a catalytic module (CM) and an X module (XM). The XM showed no significant homology with known carbohydrate-binding modules (CBMs). Recombinant full-length endoglucanase could bind Avicel, whereas the CM could not. The XM could bind various polysaccharides. The results demonstrated that the XM was a new CBM.
Bioresource Technology | 2016
Jian-Long Xue; Shuai Zhao; Rui-Ming Liang; Xin Yin; Sui-Xin Jiang; Lin-Hui Su; Qi Yang; Cheng-Jie Duan; Jun-Liang Liu; Jia-Xun Feng
In this study, a co-production of two high value-added products, glucose and xylooligosaccharides (XOS), was investigated by utilizing sugarcane bagasse (SB) within a multi-product bio-refinery framework optimized by Box-Behnken design-based response surface methodology. The developed process resulted in a maximum cellulose conversion of xylan-removed SB, 98.69±1.30%, and a maximum extracted SB xylan conversion into XOS (xylobiose and xylotriose) of 57.36±0.79% that was the highest SB xylan conversion reported in the literature, employing cellulase from Penicillium oxalicum EU2106 and recombinant endo-β-1,4-xylanase in Pichia pastoris. Consequently, a mass balance analysis showed that the maximum yields of glucose and XOS were 34.43±0.32g and 5.96±0.09 g per 100 g raw SB. Overall, this described process may be a preferred option for the comprehensive utilization of SB.
European Journal of Plant Pathology | 2011
Jia-Xun Feng; Lin Cao; Juan Li; Cheng-Jie Duan; Xue-Mei Luo; Ning Le; Haihong Wei; Shujia Liang; Chengcai Chu; Qinghua Pan; Ji-Liang Tang
Rice blast disease, caused by the fungus Magnaporthe oryzae, is a major threat to worldwide rice production. Plant basal resistance is activated by virulent pathogens in susceptible host plants. OsNPR1/NH1, a rice homolog of NPR1 that is the key regulator of systemic acquired resistance in Arabidopsis thaliana, was shown to be involved in the resistance of rice to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae and benzothiadiazole (BTH)-induced blast resistance. However, the role of OsNPR1/NH1 in rice basal resistance to blast fungus M. oryzae remains uncertain. In this study, the OsNPR1 gene was isolated and identified from rice cultivar Gui99. Transgenic Gui99 rice plants harbouring OsNPR1-RNAi were generated, and the OsNPR1-RNAi plants were significantly more susceptible to M. oryzae infection. Northern hybridization analysis showed that the expression of pathogenesis-related (PR) genes, such as PR-1a, PBZ1, CHI, GLU, and PAL, was significantly suppressed in the OsNPR1-RNAi plants. Consistently, overexpression of OsNPR1 in rice cultivars Gui99 and TP309 conferred significantly enhanced resistance to M. oryzae and increased expression of the above-mentioned PR genes. These results revealed that OsNPR1 is involved in rice basal resistance to the blast pathogen M. oryzae, thus providing new insights into the role of OsNPR1 in rice disease resistance.
Scientific Reports | 2016
Cheng-Jie Duan; Yu-Liang Feng; Qi-Long Cao; Ming-Yue Huang; Jia-Xun Feng
Most enzymes that act on carbohydrates include non-catalytic carbohydrate-binding modules (CBMs) that recognize and target carbohydrates. CBMs bring their appended catalytic modules into close proximity with the target substrate and increase the hydrolytic rate of enzymes acting on insoluble substrates. We previously identified a novel CBM (CBMC5614-1) at the C-terminus of endoglucanase C5614-1 from an uncultured microorganism present in buffalo rumen. In the present study, that the functional region of CBMC5614-1 involved in ligand binding was localized to 134 amino acids. Two representative homologs of CBMC5614-1, sharing the same ligand binding profile, targeted a range of β-linked polysaccharides that adopt very different conformations. Targeted substrates included soluble and insoluble cellulose, β-1,3/1,4-mixed linked glucans, xylan, and mannan. Mutagenesis revealed that three conserved aromatic residues (Trp-380, Tyr-411, and Trp-423) play an important role in ligand recognition and targeting. These results suggest that CBMC5614-1 and its homologs form a novel CBM family (CBM72) with a broad ligand-binding specificity. CBM72 members can provide new insight into CBM-ligand interactions and may have potential in protein engineering and biocatalysis.
Agricultural Sciences in China | 2006
Qi-qin Li; Xian-ying Meng; Xue Wu; Wei Lin; Cheng-Jie Duan; Jia-Xun Feng; Ji-Liang Tang
Two antimicrobial substances produced by Bacillus subtilis strain B11 were purified by boiling, DEAE 52 anion exchange chromatography and aluminum oxide adsorption chromatography. These purified substances showed only one spot on silica gel thin layer chromatography (TLC). Antimicrobial assays showed that antimicrobial substances A and B inhibited the growth of plant pathogens such as Fusarium oxysporum Schl f.sp. niveum, Rhizoctonia solani, Ralstonia solanacearum and Xanthomonas oryzae pv. oryzae. In addition, antimicrobial substance B could also inhibit the growth of Magnaporthe grisea. These two antimicrobial substances were resistant to proteolytic enzymes and temperature as high as 121℃.
Applied Microbiology and Biotechnology | 2017
Cheng-Jie Duan; Ming-Yue Huang; Hao Pang; Jing Zhao; Chao-Xing Wu; Jia-Xun Feng
In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest Vmax and catalytic efficiency (kcat/KM) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.
Applied Microbiology and Biotechnology | 2007
Yi Feng; Cheng-Jie Duan; Hao Pang; Xin-Chun Mo; Chun-Feng Wu; Yuan Yu; Ya-Lin Hu; Jie Wei; Ji-Liang Tang; Jia-Xun Feng