Cheng-Kun Wang
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheng-Kun Wang.
Cell Research | 2015
Huan Wang; Ling-Juan Hong; Ji-Yun Huang; Quan Jiang; Rong-rong Tao; Chao Tan; Nan-Nan Lu; Cheng-Kun Wang; Muhammad Masood Ahmed; Ying-Mei Lu; Zhi-Rong Liu; Wei-Xing Shi; En-Yin Lai; Christopher S. Wilcox; Feng Han
Septic encephalopathy (SE) is a critical factor determining sepsis mortality. Vascular inflammation is known to be involved in SE, but the molecular events that lead to the development of encephalopathy remain unclear. Using time-lapse in vivo two-photon laser scanning microscopy, we provide the first direct evidence that cecal ligation and puncture in septic mice induces microglial trafficking to sites adjacent to leukocyte adhesion on inflamed cerebral microvessels. Our data further demonstrate that septic injury increased the chemokine CXCL1 level in brain endothelial cells by activating endothelial P2RX7 and eventually enhanced the binding of Mac-1 (CD11b/CD18)-expressing leukocytes to endothelial ICAM-1. In turn, leukocyte adhesion upregulated endothelial CX3CL1, thereby triggering microglia trafficking to the injured site. The sepsis-induced increase in endothelial CX3CL1 was abolished in CD18 hypomorphic mutant mice. Inhibition of the P2RX7 pathway not only decreased endothelial ICAM-1 expression and leukocyte adhesion but also prevented microglia overactivation, reduced brain injury, and consequently doubled the early survival of septic mice. These results demonstrate the role of the P2RX7 pathway in linking neurovascular inflammation to brain damage in vivo and provide a rationale for targeting endothelial P2RX7 for neurovascular protection during SE.
Molecular Neurobiology | 2016
Ling-Juan Hong; Quan Jiang; Sen Long; Huan Wang; Ling-di Zhang; Yun Tian; Cheng-Kun Wang; Jing-jing Cao; Rong-rong Tao; Ji-Yun Huang; Mei-hua Liao; Ying-Mei Lu; Kohji Fukunaga; Nai-ming Zhou; Feng Han
Valproate exposure is associated with increased risks of autism spectrum disorder. To date, the mechanistic details of disturbance of melatonin receptor subtype 1 (MTNR1A) internalization upon valproate exposure remain elusive. By expressing epitope-tagged receptors (MTNR1A-EGFP) in HEK-293 and Neuro-2a cells, we recorded the dynamic changes of MTNR1A intracellular trafficking after melatonin treatment. Using time-lapse confocal microscopy, we showed in living cells that valproic acid interfered with the internalization kinetics of MTNR1A in the presence of melatonin. This attenuating effect was associated with a decrease in the phosphorylation of PKA (Thr197) and ERK (Thr202/Tyr204). VPA treatment did not alter the whole-cell currents of cells with or without melatonin. Furthermore, fluorescence resonance energy transfer imaging data demonstrated that valproic acid reduced the melatonin-initiated association between YFP-labeled β-arrestin 2 and CFP-labeled MTNR1A. Together, we suggest that valproic acid influences MTNR1A intracellular trafficking and signaling in a β-arrestin 2-dependent manner.
Journal of Pineal Research | 2017
Cheng-Kun Wang; Muhammad Masood Ahmed; Quan Jiang; Nan-Nan Lu; Chao Tan; Yin-Ping Gao; Qaisar Mahmood; Danyang Chen; Kohji Fukunaga; Mei Li; Zhong Chen; Christopher S. Wilcox; Ying-Mei Lu; Zheng-Hong Qin; Feng Han
Severe hypoglycemia has a detrimental impact on the cerebrovasculature, but the molecular events that lead to the disruption of the integrity of the tight junctions remain unclear. Here, we report that the microvessel integrity was dramatically compromised (59.41% of wild‐type mice) in TP53‐induced glycolysis and apoptosis regulator (TIGAR) transgenic mice stressed by hypoglycemia. Melatonin, a potent antioxidant, protects against hypoglycemic stress‐induced brain endothelial tight junction injury in the dosage of 400 nmol/L in vitro. FRET (fluorescence resonance energy transfer) imaging data of endothelial cells stressed by low glucose revealed that TIGAR couples with calmodulin to promote TIGAR tyrosine nitration. A tyrosine 92 mutation interferes with the TIGAR‐dependent NADPH generation (55.60% decreased) and abolishes its protective effect on tight junctions in human brain microvascular endothelial cells. We further demonstrate that the low‐glucose‐induced disruption of occludin and Caludin5 as well as activation of autophagy was abrogated by melatonin‐mediated blockade of nitrosative stress in vitro. Collectively, we provide information on the detailed molecular mechanisms for the protective actions of melatonin on brain endothelial tight junctions and suggest that this indole has translational potential for severe hypoglycemia‐induced neurovascular damage.
Biosensors and Bioelectronics | 2017
Shiyi Shao; Bo Chen; Juan Cheng; Cheng-Kun Wang; Yanli Zhang; Ling-Xiao Shao; Yongzhou Hu; Yifeng Han; Feng Han; Xin Li
S-nitrosylation is a posttranslational modification of protein cysteine residues leading to the formation of S-nitrosothiols and its detection is crucial to understanding of redox regulation and NO-based signaling. Prototypical detection methods for S-nitrosylation are always carried out ex situ. However, the reversible nature and the tendency of transnitrosylation highlight the necessity of its probing in intact live biological contexts. Herein we provide a fluorogenic chemical probe for the detection of S-nitrosylation in live endothelial cells. The probe is weakly emissive alone and becomes highly fluorescent only after undergoing a reaction with S-nitrosothiols in live cellular environments. This probe features high degrees of specificity and desirable sensitivity. Furthermore, it has been successfully applied to image the dynamic change of protein S-nitrosylation in live endothelial cells. The applicability of the probe in complex biological systems has been additionally verified by imaging a known target of S-nitrosylation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in live cells. Due to the versatility exemplified, this probe holds great promise for exploring the role of protein S-nitrosylation in the pathophysiological process of a variety of vascular diseases.
CNS Neuroscience & Therapeutics | 2018
Xing-Guang Liang; Chao Tan; Cheng-Kun Wang; Rong-rong Tao; Yu-Jie Huang; Kui-Fen Ma; Kohji Fukunaga; Ming-Zhu Huang; Feng Han
The cholinergic deficit is thought to underlie progressed cognitive decline in Alzheimer Disease. The lineage reprogramming of somatic cells into cholinergic neurons may provide strategies toward cell‐based therapy of neurodegenerative diseases.
Chemical Communications | 2018
Quan Jiang; Xiao-Rong Li; Cheng-Kun Wang; Juan Cheng; Chao Tan; Tian-Tian Cui; Nan-Nan Lu; Tony D. James; Feng Han; Xin Li
This communication reports on a fluorescent probe (PPI-P) for imaging active peptidyl-prolyl cis/trans isomerases in live cells. PPI-P is capable of responding to both recombinant and cellular PPIases fluorogenically, and has been shown to specifically image active PPIases in live cells.
PeerJ | 2018
Yu Lei; Cheng-Kun Wang; Quan Jiang; Xiaoyi Sun; Yongzhong Du; Yaofeng Zhu; Ying-Mei Lu
The toxicity of engineered nanoparticles remains a concern. The knowledge of biohazards associated with particular nanoparticles is crucial to make this cutting-edge technology more beneficial and safe. Here, we evaluated the toxicity of Ga2O3 nanoparticles (NPs), which are frequently used to enhance the performance of metal catalysts in a variety of catalytic reactions. The potential inflammatory signaling associated with the toxicity of HA/β-Ga2O3:Cr3+ NPs in primary cortical neurons was examined. We observed a dose-dependent decrease in cell viability and an increase in apoptosis in neurons following various concentrations (0, 1, 5, 25, 50, 100 µg/ml) of HA/β-Ga2O3:Cr3+ NPs treatment. Consistently, constitutively active forms of calcineurin (48 kDa) were significantly elevated in cultured primary cortical neurons, which was consistent with calpain activation indicated by the breakdown products of spectrin. Moreover, HA/β-Ga2O3:Cr3+ NPs result in the elevation of LC3-II formation, SQSTM/p62, and Cathepsin B, whereas phosphorylation of CaMKII (Thr286) and Synapsin I (Ser603) were downregulated in the same context. Taken together, these results demonstrate for the first time that calpain activation and a disturbance of autophagy signaling are evoked by exposure to HA/β-Ga2O3:Cr3+ NPs, which may contribute to neuronal injury in vitro.
Cerebral Cortex | 2018
Nan-Nan Lu; Chao Tan; Ninghe Sun; Ling-Xiao Shao; Xiu-Xiu Liu; Yin-Ping Gao; Rong-rong Tao; Quan Jiang; Cheng-Kun Wang; Ji-Yun Huang; Kui Zhao; Guang-Fa Wang; Zhi-Rong Liu; Kohji Fukunaga; Ying-Mei Lu; Feng Han
Grb2-associated-binding protein 1 (Gab1) is a docking/scaffolding molecule known to play an important role in cell growth and survival. Here, we report that Gab1 is decreased in cholinergic neurons in Alzheimers disease (AD) patients and in a mouse model of AD. In mice, selective ablation of Gab1 in cholinergic neurons in the medial septum impaired learning and memory and hippocampal long-term potentiation. Gab1 ablation also inhibited SK channels, leading to an increase in firing in septal cholinergic neurons. Gab1 overexpression, on the other hand, improved cognitive function and restored hippocampal CaMKII autorphosphorylation in AD mice. These results suggest that Gab1 plays an important role in the pathophysiology of AD and may represent a novel therapeutic target for diseases involving cholinergic dysfunction.
Cell discovery | 2018
Lupeng Ye; Cheng-Kun Wang; Lingjuan Hong; Ninghe Sun; Danyang Chen; Sidi Chen; Feng Han
CRISPR systems have been proven as versatile tools for site-specific genome engineering in mammalian species. During the gene editing processes, these RNA-guide nucleases introduce DNA double strand breaks (DSBs), in which non-homologous DNA end joining (NHEJ) dominates the DNA repair pathway, limiting the efficiency of homology-directed repair (HDR), the alternative pathway essential for precise gene targeting. Multiple approaches have been developed to enhance HDR, including chemical compound or RNA interference-mediated inhibition of NHEJ factors, small molecule activation of HDR enzymes, or cell cycle timed delivery of CRISPR complex. However, these approaches face multiple challenges, yet have moderate or variable effects. Here we developed a new approach that programs both NHEJ and HDR pathways with CRISPR activation and interference (CRISPRa/i) to achieve significantly enhanced HDR efficiency of CRISPR-mediated gene editing. The manipulation of NHEJ and HDR pathway components, such as CtIP, CDK1, KU70, KU80, and LIG4, was mediated by catalytically dead guide RNAs (dgRNAs), thus relying on only a single catalytically active Cas9 to perform both CRISPRa/i and precise gene editing. While reprogramming of most DNA repair factors or their combinations tested enhanced HDR efficiency, simultaneously activating CDK1 and repressing KU80 has the strongest effect with increased HDR rate upto an order of magnitude. Doxycycline-induced dgRNA-based CRISPRa/i programming of DNA repair enzymes, as well as viral packaging enabled flexible and tunable HDR enhancement for broader applicability in mammalian cells. Our study provides an effective, flexible, and potentially safer strategy to enhance precise genome modifications, which might broadly impact human gene editing and therapy.
CNS Neuroscience & Therapeutics | 2018
Huan Wang; Yi-Xuan Yin; Dong-Mei Gong; Ling-Juan Hong; Gang Wu; Quan Jiang; Cheng-Kun Wang; Pablo Blinder; Sen Long; Feng Han; Ying-Mei Lu
Autism spectrum disorder (ASD) is a wide range of neurodevelopmental disorders involving deficits in social interaction and communication. Unfortunately, autism remains a scientific and clinical challenge owing to the lack of understanding the cellular and molecular mechanisms underlying it. This study aimed to investigate the pathophysiological mechanism underlying leukocyte‐endothelial adhesion in autism‐related neurovascular inflammation.