Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheng Soon Ong is active.

Publication


Featured researches published by Cheng Soon Ong.


international conference on pattern recognition | 2010

The Balanced Accuracy and Its Posterior Distribution

Kay Henning Brodersen; Cheng Soon Ong; Klaas E. Stephan; Joachim M. Buhmann

Evaluating the performance of a classification algorithm critically requires a measure of the degree to which unseen examples have been identified with their correct class labels. In practice, generalizability is frequently estimated by averaging the accuracies obtained on individual cross-validation folds. This procedure, however, is problematic in two ways. First, it does not allow for the derivation of meaningful confidence intervals. Second, it leads to an optimistic estimate when a biased classifier is tested on an imbalanced dataset. We show that both problems can be overcome by replacing the conventional point estimate of accuracy by an estimate of the posterior distribution of the balanced accuracy.


PLOS Computational Biology | 2011

Generative Embedding for Model-Based Classification of fMRI Data

Kay Henning Brodersen; Thomas M. Schofield; Alexander P. Leff; Cheng Soon Ong; Ekaterina I. Lomakina; Joachim M. Buhmann; Klaas E. Stephan

Decoding models, such as those underlying multivariate classification algorithms, have been increasingly used to infer cognitive or clinical brain states from measures of brain activity obtained by functional magnetic resonance imaging (fMRI). The practicality of current classifiers, however, is restricted by two major challenges. First, due to the high data dimensionality and low sample size, algorithms struggle to separate informative from uninformative features, resulting in poor generalization performance. Second, popular discriminative methods such as support vector machines (SVMs) rarely afford mechanistic interpretability. In this paper, we address these issues by proposing a novel generative-embedding approach that incorporates neurobiologically interpretable generative models into discriminative classifiers. Our approach extends previous work on trial-by-trial classification for electrophysiological recordings to subject-by-subject classification for fMRI and offers two key advantages over conventional methods: it may provide more accurate predictions by exploiting discriminative information encoded in ‘hidden’ physiological quantities such as synaptic connection strengths; and it affords mechanistic interpretability of clinical classifications. Here, we introduce generative embedding for fMRI using a combination of dynamic causal models (DCMs) and SVMs. We propose a general procedure of DCM-based generative embedding for subject-wise classification, provide a concrete implementation, and suggest good-practice guidelines for unbiased application of generative embedding in the context of fMRI. We illustrate the utility of our approach by a clinical example in which we classify moderately aphasic patients and healthy controls using a DCM of thalamo-temporal regions during speech processing. Generative embedding achieves a near-perfect balanced classification accuracy of 98% and significantly outperforms conventional activation-based and correlation-based methods. This example demonstrates how disease states can be detected with very high accuracy and, at the same time, be interpreted mechanistically in terms of abnormalities in connectivity. We envisage that future applications of generative embedding may provide crucial advances in dissecting spectrum disorders into physiologically more well-defined subgroups.


international conference on pattern recognition | 2010

The Binormal Assumption on Precision-Recall Curves

Kay Henning Brodersen; Cheng Soon Ong; Klaas E. Stephan; Joachim M. Buhmann

The precision-recall curve (PRC) has become a widespread conceptual basis for assessing classification performance. The curve relates the positive predictive value of a classifier to its true positive rate and often provides a useful alternative to the well-known receiver operating characteristic (ROC). The empirical PRC, however, turns out to be a highly imprecise estimate of the true curve, especially in the case of a small sample size and class imbalance in favour of negative examples. Ironically, this situation tends to occur precisely in those applications where the curve would be most useful, e.g., in anomaly detection or information retrieval. Here, we propose to estimate the PRC on the basis of a simple distributional assumption about the decision values that generalizes the established binormal model for estimating smooth ROC curves. Using simulations, we show that our approach outperforms empirical estimates, and that an account of the class imbalance is crucial for obtaining unbiased PRC estimates.


NeuroImage | 2011

Model-based feature construction for multivariate decoding

Kay Henning Brodersen; Florent Haiss; Cheng Soon Ong; Fabienne Jung; Marc Tittgemeyer; Joachim M. Buhmann; Bruno Weber; Klaas E. Stephan

Conventional decoding methods in neuroscience aim to predict discrete brain states from multivariate correlates of neural activity. This approach faces two important challenges. First, a small number of examples are typically represented by a much larger number of features, making it hard to select the few informative features that allow for accurate predictions. Second, accuracy estimates and information maps often remain descriptive and can be hard to interpret. In this paper, we propose a model-based decoding approach that addresses both challenges from a new angle. Our method involves (i) inverting a dynamic causal model of neurophysiological data in a trial-by-trial fashion; (ii) training and testing a discriminative classifier on a strongly reduced feature space derived from trial-wise estimates of the model parameters; and (iii) reconstructing the separating hyperplane. Since the approach is model-based, it provides a principled dimensionality reduction of the feature space; in addition, if the model is neurobiologically plausible, decoding results may offer a mechanistically meaningful interpretation. The proposed method can be used in conjunction with a variety of modelling approaches and brain data, and supports decoding of either trial or subject labels. Moreover, it can supplement evidence-based approaches for model-based decoding and enable structural model selection in cases where Bayesian model selection cannot be applied. Here, we illustrate its application using dynamic causal modelling (DCM) of electrophysiological recordings in rodents. We demonstrate that the approach achieves significant above-chance performance and, at the same time, allows for a neurobiological interpretation of the results.


european conference on machine learning | 2010

Entropy and margin maximization for structured output learning

Patrick Pletscher; Cheng Soon Ong; Joachim M. Buhmann

We consider the problem of training discriminative structured output predictors, such as conditional random fields (CRFs) and structured support vector machines (SSVMs). A generalized loss function is introduced, which jointly maximizes the entropy and the margin of the solution. The CRF and SSVM emerge as special cases of our framework. The probabilistic interpretation of large margin methods reveals insights about margin and slack rescaling. Furthermore, we derive the corresponding extensions for latent variable models, in which training operates on partially observed outputs. Experimental results for multiclass, linear-chain models and multiple instance learning demonstrate that the generalized loss can improve accuracy of the resulting classifiers.


Journal of Pathology Informatics | 2013

TMARKER: A free software toolkit for histopathological cell counting and staining estimation

Peter J. Schüffler; Thomas J. Fuchs; Cheng Soon Ong; Peter Wild; Niels J. Rupp; Joachim M. Buhmann

Background: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. Methods: We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user′s feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. Results: Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. Conclusion: We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types.


Bioinformatics | 2013

Near-optimal experimental design for model selection in systems biology

Alberto Giovanni Busetto; Alain Hauser; Gabriel Krummenacher; Mikael Sunnåker; Sotiris Dimopoulos; Cheng Soon Ong; Jörg Stelling; Joachim M. Buhmann

Motivation:u2003Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. Results:u2003We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Availability:u2003Toolbox ‘NearOED’ available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org). Contact:[email protected] Supplementary information:u2003Supplementary data are available at Bioinformatics online.


dagm conference on pattern recognition | 2010

Computational TMA analysis and cell nucleus classification of renal cell carcinoma

Peter J. Schüffler; Thomas J. Fuchs; Cheng Soon Ong; Volker Roth; Joachim M. Buhmann

We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the processing pipeline, as it is not obvious whether performance improvements at individual steps improve overall accuracy. The experimental results show that classification accuracy, which is comparable to trained human experts, can be achieved by using support vector machines (SVM) with appropriate kernels. Furthermore, we provide evidence that the shape of cell nuclei increases the classification performance. Most importantly, these improvements in classification accuracy result in corresponding improvements for the medically relevant estimation of immunohistochemical staining.


international conference on machine learning | 2009

Optimized expected information gain for nonlinear dynamical systems

Alberto Giovanni Busetto; Cheng Soon Ong; Joachim M. Buhmann

This paper addresses the problem of active model selection for nonlinear dynamical systems. We propose a novel learning approach that selects the most informative subset of time-dependent variables for the purpose of Bayesian model inference. The model selection criterion maximizes the expected Kullback-Leibler divergence between the prior and the posterior probabilities over the models. The proposed strategy generalizes the standard D-optimal design, which is obtained from a uniform prior with Gaussian noise. In addition, our approach allows us to determine an information halting criterion for model identification. We illustrate the benefits of our approach by differentiating between 18 published biochemical models of the TOR signaling pathway, a model selection problem in systems biology. By generating pivotal selection experiments, our strategy outperforms the standard Aoptimal, D-optimal and E-optimal sequential design techniques.


IEEE Transactions on Intelligent Transportation Systems | 2018

Wheel Defect Detection With Machine Learning

Gabriel Krummenacher; Cheng Soon Ong; Stefan Koller; Seijin Kobayashi; Joachim M. Buhmann

Wheel defects on railway wagons have been identified as an important source of damage to the railway infrastructure and rolling stock. They also cause noise and vibration emissions that are costly to mitigate. We propose two machine learning methods to automatically detect these wheel defects, based on the wheel vertical force measured by a permanently installed sensor system on the railway network. Our methods automatically learn different types of wheel defects and predict during normal operation if a wheel has a defect or not. The first method is based on novel features for classifying time series data and it is used for classification with a support vector machine. To evaluate the performance of our method we construct multiple data sets for the following defect types: flat spot, shelling, and non-roundness. We outperform classical defect detection methods for flat spots and demonstrate prediction for the other two defect types for the first time. Motivated by the recent success of artificial neural networks for image classification, we train custom artificial neural networks with convolutional layers on 2-D representations of the measurement time series. The neural network approach improves the performance on wheels with flat spots and non-roundness by explicitly modeling the multi sensor structure of the measurement system through multiple instance learning and shift invariant networks.

Collaboration


Dive into the Cheng Soon Ong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Fuchs

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge