Cheng Xinrong
Tongji University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheng Xinrong.
Science in China Series D: Earth Sciences | 2001
Wang Pinxian; Tian Jun; Cheng Xinrong
High-resolution oxygen isotope records over the last 2249 ka (MIS 1–86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m) drilled in the Nansha area, southern South China Sea. The sampling resolution is at about 2 ka intervals, resulting in one of the best oxygen isotope records over the global ocean. The oxygen isotope curves, displaying details in the Pleistocene glacial cycles, have revealed a nearly 300 ka long stage of transition from a predominant 40 ka to 100 ka periodicity. Therefore, the “Mid-Pleistocene Revolution” should be considered as a process of transition rather than an abrupt change. Within the 100 ka glacial cycles, the changes in tropical sea surface water were found to lead those in high-latitude ice sheet. Our comparisons show that the ice sheet expansion and the glacial stage extension in the Northern Hemisphere with the 100 ka cycles must have been driven not by ice sheet itself, but by processes outside the high latitudes of the Northern Hemisphere.
Science China-earth Sciences | 2001
Zhao Quanhong; Jian Zhimin; Wang Jiliang; Cheng Xinrong; Huang Baoqi; Xu Jian; Zhou Zh
A detailed stable isotopic study based on benthic foraminifera from 1165 samples of ODP Site 1148 (18° 50.17.3’N, 116° 33.93’E, water depth 3308.3 m), northern South China Sea, provides an excellent oxygen isotopic record with an average resolution of 30 ka. It contains the most continuous δ18O data with highest resolution for the whole Neogene sequence in the world. The δ18O curve shows a step-like increasing upwards and records 5 increases, 3 decreases and 2 stable stages during the Neogene, reflecting the general trend of global cooling. Among these events the δ18O decrease at 17.2–14.5 Ma, and two δ18O increases at 14.5-13.6 and 3.0-2.4 Ma are most marked and globally comparable. The intervals at 13.6-10.2 and 6.0-3.0 Ma with the lowest-amplitude and least fluctuation in δ18O represent the most stable bottom water periods for the South China Sea.
Science in China Series D: Earth Sciences | 2001
Zhao Quanhong; Wang Pinxian; Cheng Xinrong; Wang Jiliang; Huang Baoqi; Xu Jian; Zhou Zhen; Jian Zhimin
High-resolution δ13C records are presented for the Miocene benthic foraminifersCibicidoides wuellerstorfi andC. kullenbergi (24-5 Ma) and the planktonic foraminiferGlobigerinoides sacculifer (18-5 Ma) from ODP Site 1148A (18° 50.17’N, 116° 33.93’E, water depth 3308.3 m), northern South China Sea. The general pattern of parallel benthic and planktonic δ13C shows a decrease trend of δ13C values from the early-middle Miocene to the middle-late Miocene. Two distinct δ13C positive excursions at 23.1-22.2 and 17.3-13.6 Ma, and two negative excursions at 10.2-9.4 and 6.9-6.2 Ma have been recognized. All these events are cosmopolitan, providing the good data for the stratigraphic correlation of the South China Sea with the global oceans as well as for studying the changes of the global carbon reservoir and its corresponding climate.
Science China-earth Sciences | 2001
Jian Zhimin; Cheng Xinrong; Zhao Quanhong; Wang Jiliang; Wang Pinxian
Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the last 3 million years for the first time in the SCS. Furthermore, the paleoceanographic changes in the northern SCS during the last 6 million years have been unraveled. The benthic foraminiferal δ18O record shows that before δ3.1 Ma the SCS was much more influenced by the warm intermediate water of the Pacific. The remarkable decrease in the deepwater temperature of the SCS during the period of 3.1-2.5 Ma demonstrates the formation of the Northern Hemisphere ice-sheet. However, the several sea surface temperature (SST) reductions during the early and middle Pliocene, reflected by the planktonic foraminiferal δ18O, might be related to the ice-sheet growth in the Antarctic region. Only those stepwise and irreversible SST reductions during the period of δ2.2-0.9 Ma could be related to the formation and growth of the Northern Hemisphere ice-sheet.Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the last 3 million years for the first time in the SCS. Furthermore, the paleoceanographic changes in the northern SCS during the last 6 million years have been unraveled. The benthic foraminiferal δ 18 O record shows that before ~3.1 Ma the SCS was much more influenced by the warm intermediate water of the Pacific. The remarkable decrease in the deepwater temperature of the SCS during the period of 3.1—2.5 Ma demonstrates the formation of the Northern Hemisphere ice-sheet. However, the several sea surface temperature (SST) reductions during the early and middle Pliocene, reflected by the planktonic foraminiferal δ 18 O, might be related to the ice-sheet growth in the Antarctic region. Only those stepwise and irreversible SST reductions during the period of ~2.2—0.9 Ma could be related to the formation and growth of the Northern Hemisphere ice-sheet.
Chinese Science Bulletin | 2000
Wang Jiliang; Zhao Quanhong; Cheng Xinrong; Wang Rujian; Wang Pinxian
The present study confirms the stratigraphical position of microtektite layer being clearly located below the Brunhes/Matuyama (BIM) boundary. Based on the sedimentation rate derived from the stable isotopic and magnetic data of ODP Site 772A, cores 17957 and 17959 in the South China Sea, the age of the mid-Pleistocene impact event was estimated at 1–12 ka earlier than the Brunhes-Matuyama polarity reversal. However, the microtektites were found above the measured BIM boundary in the loess profile due to the downward deviation of the measured B/M boundary from its true position[1]. This demonstrates the complexity of paleo-magnetic records in the loess profiles which, in turn, causes the confusion in the sea-land stratigraphic correlation.
Science in China Series D: Earth Sciences | 1998
Cheng Xinrong; Wang Pinxian
The relative abundance ofFlorisphueru profunda, a calcareous nannofossil species in lower euphotic zone, affords an opportunity to study variations in upper ocean structure such as thickness of mixed layer. As revealed by the nannofossil analysis in sediments since 20 ka B. P. from three Okinawa Trough cores, the percentage ofF. profunda increased significantly from glacial to Holocene, with a declining event ca 4 ka B. P. in its southern part. Its downcore trend is similar to that ofPulleniatina obliquiloculuta, a tropical planktonic foraminifera1 species which lives in subsurface water below thermocline in the modern ocean. Their similar variations imply an eastward shift of the Kuroshio Current, a reduction in thickness of the mixed layer, a shallowing of thermocline and a possible increase of turbidity in the upper ocean during the glaciation. The eastward shift of the Kuroshio might be repeated again about 4 ka B.P.
Science China-earth Sciences | 2001
Liu Chuanlian; Cheng Xinrong
A great number of calcareous nannofossils have been found in the deep-sea sediments of 2.32 Ma at ODP Site 1143 located in the Nansha area, the southern South China Sea. The number of coccoliths varies from about 0.5×106 up to almost 53×106 coccoliths/g sediment, with an average of 16×106 coccoliths/g sediment. The accumulation rate of total coccoliths varies from 1×106 to 278×106 coccoliths/cm2 ka. The nannofossil assemblages are usually dominated by a lower-photic species-Florisphaera profunda, of which the average percentage is about 70% in all samples. The absolute abundance and the accumulation rate of nannofossils as well as the percentage ofF. profunda display significant oscillations on two different time scales. One is the fluctuation coincident with the glacial-interglacial cycle, and the other is the long-term changes on a time scale longer than 100 ka. Six evolutionary stages of calcareous nannofossils could be divided for the last 2.32 Ma, from which we can reconstruct the changes in the depth of nutricline of the Nansha area. In this paper, the possible mechanism resulting in these variations is also discussed.
Chinese Science Bulletin | 2001
Huang Baoqi; Jian Zhimin; Cheng Xinrong; Wang Pinxian
Based on a quantitative analysis of planktonic foraminifera in two gravity cores (17928 and 17954), the history of the upper-water structure of the eastern and west ern slopes of the South China Sea (SCS) over the last 220 Ka was reconstructed using the transfer function technique. Our results show that lower sea surface temperature (SST) and shallower depth of thermocline (DOT) exist at Core 17928, off Luzon, in the glacial periods; on the contrary, the same situation turned up in the interglacial at Core 17954, off Vietnam. These changes of the upper-water column structure in the two areas are induced by coastal upwelling, which in turn is driven by monsoons, namely, winter monsoon leads to upwelling at the eastern slope, and summer monsoon gives birth to upwelling on the western slope. Moreover, the intensity of upwellings is also closely related to the evolution of the East Asian monsoon. Therefore, we assume that the changes of the upwelling in the two sites indicate strengthenning of winter and summer monsoon during the glacial and inter glacial periods, respectively.
Journal of China University of Geosciences | 2007
Li Qianyu; Zhao Quanhong; Zhong Guangfa; Jian Zhimin; Tian Jun; Cheng Xinrong; Wang Pinxian; Chen Mu-hong
Science China-earth Sciences | 2005
Tian Jun; Wang Pinxian; Cheng Xinrong; Wang Rujian; Sun Xiangjun