Cheng-Ye Wang
Kunming Institute of Zoology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheng-Ye Wang.
American Journal of Human Genetics | 2004
Malliya Gounder Palanichamy; C. P. Sun; Suraksha Agrawal; Hans-Jürgen Bandelt; Qing-Peng Kong; Faisal Khan; Cheng-Ye Wang; Tapas Kumar Chaudhuri; Venkatramana Palla; Ya-Ping Zhang
To resolve the phylogeny of the autochthonous mitochondrial DNA (mtDNA) haplogroups of India and determine the relationship between the Indian and western Eurasian mtDNA pools more precisely, a diverse subset of 75 macrohaplogroup N lineages was chosen for complete sequencing from a collection of >800 control-region sequences sampled across India. We identified five new autochthonous haplogroups (R7, R8, R30, R31, and N5) and fully characterized the autochthonous haplogroups (R5, R6, N1d, U2a, U2b, and U2c) that were previously described only by first hypervariable segment (HVS-I) sequencing and coding-region restriction-fragment-length polymorphism analysis. Our findings demonstrate that the Indian mtDNA pool, even when restricted to macrohaplogroup N, harbors at least as many deepest-branching lineages as the western Eurasian mtDNA pool. Moreover, the distribution of the earliest branches within haplogroups M, N, and R across Eurasia and Oceania provides additional evidence for a three-founder-mtDNA scenario and a single migration route out of Africa.
International Journal of Cancer | 2007
Cheng-Ye Wang; Hua-Wei Wang; Yong-Gang Yao; Qing-Peng Kong; Ya-Ping Zhang
The complete mitochondrial genomes of the primary cancerous, matched paracancerous normal and distant normal tissues from 10 early‐stage breast cancer patients were analyzed in this study, with special attempt (i) to investigate whether the reported high frequency of mitochondrial DNA (mtDNA) somatic mutations in breast cancer could be repeated under a stringent data quality control, and (ii) to characterize the spectrum of mtDNA somatic mutations in Chinese breast cancer patients and evaluate their potential significance in early cancer diagnosis. Two heteroplasmic somatic transitions (T2275C and A8601G) were identified in our samples. The transition A8601G was present in the primary cancerous and paracancerous normal tissues from patient no. 3. Transition T2275C was found in the primary cancerous tissue but not in other normal tissues from patient no. 6; this transition has been reported in the colonic crypts and is located at a highly conserved site in the 16S rRNA gene. Subsequent cloning sequencing confirmed the absence of both mutations in the distant normal tissues from the 2 patients. The overall rate of somatic mutations in our patients was much lower than those of previous studies of breast cancer. Our results gave support to the recent claim that the high frequency of mtDNA somatic mutations in cancer studies is overestimated. Based on the mtDNA mutation pattern in early stage breast cancer observed in this study, we cautioned the enthusiasms and efforts to look for somatic mutations that were of diagnostic value in cancer early detection.
PLOS ONE | 2008
Qing-Peng Kong; Antonio Salas; C. P. Sun; Noriyuki Fuku; Masashi Tanaka; Li Zhong; Cheng-Ye Wang; Yong-Gang Yao; Hans-Jürgen Bandelt
Background Large-scale genome sequencing poses enormous problems to the logistics of laboratory work and data handling. When numerous fragments of different genomes are PCR amplified and sequenced in a laboratory, there is a high immanent risk of sample confusion. For genetic markers, such as mitochondrial DNA (mtDNA), which are free of natural recombination, single instances of sample mix-up involving different branches of the mtDNA phylogeny would give rise to reticulate patterns and should therefore be detectable. Methodology/Principal Findings We have developed a strategy for comparing new complete mtDNA genomes, one by one, to a current skeleton of the worldwide mtDNA phylogeny. The mutations distinguishing the reference sequence from a putative recombinant sequence can then be allocated to two or more different branches of this phylogenetic skeleton. Thus, one would search for two (or three) near-matches in the total mtDNA database that together best explain the variation seen in the recombinants. The evolutionary pathway from the mtDNA tree connecting this pair together with the recombinant then generate a grid-like median network, from which one can read off the exchanged segments. Conclusions We have applied this procedure to a large collection of complete human mtDNA sequences, where several recombinants could be distilled by our method. All these recombinant sequences were subsequently corrected by de novo experiments – fully concordant with the predictions from our data-analytical approach.
Journal of Human Genetics | 2004
Qing-Peng Kong; Yong-Gang Yao; C. P. Sun; Chun-Ling Zhu; Li Zhong; Cheng-Ye Wang; Wang-Wei Cai; Xiang-Min Xu; An-Long Xu; Ya-Ping Zhang
AbstractIn this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which substituted methionine in the translational initiation codon of the NADH dehydrogenase subunit 5 gene (ND5) with threonine. This nucleotide change was originally identified in two mtDNAs belonging to haplogroup F2 by our previous complete sequencing of 48 mtDNAs. Since then, a total of 76 F2 mtDNAs have been identified by the variations occurring in the hypervariable segments and coding regions among more than 3,000 individuals across China. As the T12338C change was detected in 32 samples representing various sub-clades of the F2 haplogroup while not in 14 non-F2 controls, we believe that the T12338C change is specific to the F2 haplogroup. As F2 and its sub-clades were widely distributed in normal individuals of various Chinese populations, we conclude that T12338C is not pathogenic. In addition, based on the average distribution frequency, haplotype diversity and nucleotide diversity of haplogroup F2 in the populations across China, the T12338C nucleotide substitution seems to have been occurred in north China about 42,000 years ago. Our results provided a good paradigm for distinguishing a polymorphic change from a pathogenic mutation based on mtDNA phylogeny.
American Journal of Physical Anthropology | 2009
Wen-Zhi Wang; Cheng-Ye Wang; Yao-Ting Cheng; An-Long Xu; Chun-Ling Zhu; Shi-Fang Wu; Qing-Peng Kong; Ya-Ping Zhang
Hakka and Chaoshanese are two unique Han populations residing in southern China but with northern Han (NH) cultural traditions and linguistic influences. Although most of historical records indicate that both populations migrated from northern China in the last two thousand years, no consensus on their origins has been reached so far. To shed more light on the origins of Hakka and Chaoshanese, mitochondrial DNAs (mtDNAs) of 170 Hakka from Meizhou and 102 Chaoshanese from Chaoshan area, Guangdong Province, were analyzed. Our results show that some southern Chinese predominant haplogroups, e.g. B, F, and M7, have relatively high frequencies in both populations. Although median network analyses show that Hakka/Chaoshanese share some haplotypes with NH, interpopulation comparison reveals that both populations show closer affinity with southern Han (SH) populations than with NH. In consideration of previous results from nuclear gene (including Y chromosome) research, it is likely that matrilineal landscapes of both Hakka and Chaoshanese have largely been shaped by the local people during their migration southward and/or later colonization in southern China, and factors such as cultural assimilation, patrilocality, and even sex-bias in the immigrants might have played important roles during the process.
PLOS ONE | 2011
Cheng-Ye Wang; Hui Li; Xiao-Dan Hao; Jia Liu; Jia-Xin Wang; Wen-Zhi Wang; Qing-Peng Kong; Ya-Ping Zhang
In the past decade, a high incidence of somatic mitochondrial DNA (mtDNA) mutations has been observed, mostly based on a fraction of the molecule, in various cancerous tissues; nevertheless, some of them were queried due to problems in data quality. Obviously, without a comprehensive understanding of mtDNA mutational profile in the cancerous tissue of a specific patient, it is unlikely to disclose the genuine relationship between somatic mtDNA mutations and tumorigenesis. To achieve this objective, the most straightforward way is to directly compare the whole mtDNA genome variation among three tissues (namely, cancerous tissue, para-cancerous tissue, and distant normal tissue) from the same patient. Considering the fact that most of the previous studies on the role of mtDNA in colorectal tumor focused merely on the D-loop or partial segment of the molecule, in the current study we have collected three tissues (cancerous, para-cancerous and normal tissues) respectively recruited from 20 patients with colorectal tumor and completely sequenced the mitochondrial genome of each tissue. Our results reveal a relatively lower incidence of somatic mutations in these patients; intriguingly, all somatic mutations are in heteroplasmic status. Surprisingly, the observed somatic mutations are not restricted to cancer tissues, for the para-cancer tissues and distant normal tissues also harbor somatic mtDNA mutations with a lower frequency than cancerous tissues but higher than that observed in the general population. Our results suggest that somatic mtDNA mutations in cancerous tissues could not be simply explained as a consequence of tumorigenesis; meanwhile, the somatic mtDNA mutations in normal tissues might reflect an altered physiological environment in cancer patients.
European Journal of Human Genetics | 2009
Hui Li; Cheng-Ye Wang; Jia-Xin Wang; Gui-Sheng Wu; Ping Yu; Xiao-Yi Yan; Yong-Gang Chen; Lu-Hang Zhao; Ya-Ping Zhang
Mutations in the long-range limb-specific cis-regulator (ZRS) could cause ectopic shh gene expression and are responsible for preaxial polydactyly (PPD). In this study, we analyzed a large Chinese isolated autosomal dominant PPD pedigree. By fine mapping and haplotype construction, we located the linked region to a 1.7 cM interval between flanking markers D7S2465 and D7S2423 of chromosome 7q36. We directly sequenced the candidate loci in this linked region, including the coding regions of the five genes (HLXB9, LMBR1, NOM1, RNF32 and C7orf13), the regulatory element (ZRS) of shh, the whole intron 5 of LMBR1 which contained the ZRS, and 18 conserved noncoding sequences (CNSs). Interestingly, no pathogenic mutation was identified. By using real-time quantitative PCR (qPCR), we also excluded the ZRS duplication in this pedigree. Our results indicate that, at least, it is not the mutation in a functional gene, CNS region or duplication of ZRS that cause the phenotype of this pedigree. The etiology of this PPD family still remains unclear and the question whether another limb-specific regulatory element of shh gene exists in the noncoding region in this 1.7 cM interval remains open for future research.
BMC Medical Genetics | 2009
Hui Li; Cheng-Ye Wang; Jia-Xin Wang; Nelson L.S. Tang; Liang Xie; Yuan-ying Gong; Zhao Yang; Liang-you Xu; Qing-Peng Kong; Ya-Ping Zhang
BackgroundDC-SIGNR (also called CD209L) has been extensively studied on its role in host genetic predisposition to viral infection. In particular, variable number tandem repeat (VNTR) of the neck-region of DC-SIGNR is highly polymorphic and the polymorphism has been investigated for genetic predisposition to various infectious diseases, though conflicting results had been reported. As infection is a major cause of human death and a mechanism of natural selection, we hypothesized that VNTR polymorphism of DC-SIGNR might have an effect on human life span.MethodsHere we collected 361 peri-centenarian individuals (age ≥94 for female and age ≥90 for male) and 342 geographically matched controls (age 22-53, mean 35.0 ± 12.0) from Han Chinese. The VNTR polymorphism of the neck region was determined by PCR and genotype was called by separating the PCR products in agarose gel.ResultsA total of 11 genotypes and 5 alleles were found in our population. The genotype distribution, allele frequencies and homozygote proportion did not show a significant difference between peri-centenarian and control group. As gender differences in lifespan are ubiquitously observed throughout the animal kingdom, we then stratified the samples by gender. There was more 6/7 genotypes in female peri-centenarian group than that in female control group, at a marginal level of significance (5.56 vs. 1.28%, p = 0.041). The difference was not significant after correction by Bonferroni method. It suggests a possible differential effect of DC-SIGNR VNTR genotypes between sexes. Further studies are warranted to confirm our preliminary findings and investigate the mechanisms of the underlying functions.ConclusionsOur study indicated that there was absence of association between the neck region polymorphism of DC-SIGNR and longevity in Han Chinese population. But the question of whether the DC-SIGNR could affect longevity in a gender-specific pattern remains open.
Human Molecular Genetics | 2006
Qing-Peng Kong; Hans-Jürgen Bandelt; C. P. Sun; Yong-Gang Yao; Antonio Salas; Alessandro Achilli; Cheng-Ye Wang; Li Zhong; Chun-Ling Zhu; Shi-Fang Wu; Antonio Torroni; Ya-Ping Zhang
Molecular Biology and Evolution | 2004
Yong-Gang Yao; Qing-Peng Kong; Cheng-Ye Wang; Chun-Ling Zhu; Ya-Ping Zhang