Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where g-Yi Chen is active.

Publication


Featured researches published by g-Yi Chen.


Cancer Letters | 2014

MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer

Ming-Ming Tsai; Chia-Siu Wang; Chung-Ying Tsai; Cheng-Yi Chen; Hsiang-Cheng Chi; Yi-Hsin Tseng; Pei-Jung Chung; Yang-Hsiang Lin; I-Hsiao Chung; Ching-Ying Chen; Kwang-Huei Lin

MicroRNAs (miRNAs) play an important role to contribute carcinogenesis. The aim of the current study was to identify useful biomarkers from miRNAs. Differential miRNA profiles were analyzed using the miRNA qRT-PCR-based assay. Two of the most upregulated miRNAs were selected and validated. The miR-196a/-196b levels were significantly increased in gastric cancer (GC) tissues (n=109). Overexpression of miR-196a/-196b was significantly associated with tumor progression and poorer 5-year survival outcomes. Overexpression of miR-196a/-196b enhances GC cell migration and invasion. Further, radixin was identified as a target gene of miR-196a/-196b. Elevated miR-196a/-196b expression in GC cells led to reduced radixin protein levels and vice versa. Notably, an inverse correlation between miR-196a/-196b and radixin mRNA and protein expression was observed in GC tissues with in situ hybridization and immunohistochemistry analyses. Together, miR-196a/-196b inhibitory oligonucleotides or overexpression of the radixin may thus have therapeutic potential in suppressing GC metastasis.


Clinical Cancer Research | 2014

Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis.

Chung-Ying Tsai; Chia-Siu Wang; Ming-Ming Tsai; Hsiang-Cheng Chi; Wan-Li Cheng; Yi-Hsin Tseng; Cheng-Yi Chen; Crystal D. Lin; Jun-Yi Wu; Lu-Hai Wang; Kwang-Huei Lin

Purpose: The proinflammatory cytokine interleukin-32 (IL-32) is a novel tumor marker highly expressed in various human carcinomas, including gastric cancer. However, its effects on prognosis of patients with gastric cancer and cancer metastasis are virtually unknown at present. The main aim of this study was to explore the clinical significance of IL-32 in gastric cancer and further elucidate the molecular mechanisms underlying IL-32–mediated migration and invasion. Experimental Design: Gastric cancer cells with ectopic expression or silencing of IL-32 were examined to identify downstream molecules and establish their effects on cell motility, invasion, and lung metastasis in vivo. Results: IL-32 was significantly upregulated in gastric cancer and positively correlated with aggressiveness of cancer and poor prognosis. Ectopic expression of IL-32 induced elongated morphology and increased cell migration and invasion via induction of IL-8, VEGF, matrix metalloproteinase 2 (MMP2), and MMP9 expression via phosphor-AKT/phospho-glycogen synthase kinase 3β/active β-catenin as well as hypoxia-inducible factor 1α (HIF-1α) signaling pathways. Conversely, depletion of IL-32 in gastric cancer cells reversed these effects and decreased lung colonization in vivo. Examination of gene expression datasets in oncomine and staining of gastric cancer specimens demonstrated the clinical significance of IL-32 and its downstream molecules by providing information on their coexpression patterns. Conclusions: IL-32 contributes to gastric cancer progression by increasing the metastatic potential resulting from AKT, β-catenin, and HIF-1α activation. Our results clearly suggest that IL-32 is an important mediator for gastric cancer metastasis and independent prognostic predictor of gastric cancer. Clin Cancer Res; 20(9); 2276–88. ©2014 AACR.


Hepatology | 2012

Dickkopf 4 positively regulated by the thyroid hormone receptor suppresses cell invasion in human hepatoma cells.

Chen-Hsin Liao; Chau-Ting Yeh; Ya-Hui Huang; Sheng-Ming Wu; Hsiang-Cheng Chi; Ming-Ming Tsai; Chung-Ying Tsai; Chia-Jung Liao; Yi-Hsin Tseng; Yang-Hsiang Lin; Cheng-Yi Chen; I-Hsiao Chung; Wan-Li Cheng; Wei-Jan Chen; Kwang-Huei Lin

Thyroid hormone (T3) mediates cellular growth, development, and differentiation by binding to the nuclear thyroid hormone receptor (TR). Recent studies suggest that long‐term hypothyroidism is associated with human hepatocellular carcinoma (HCC) independent from other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein, antagonizes the Wnt signal pathway. In this study, we demonstrate that T3 may play a suppressor role by inducing DKK4 expression in HCC cells at both the messenger RNA (mRNA) and protein levels. DKK4 was down‐regulated in 67.5% of HCC cancerous tissues. The decrease in DKK4 levels was accompanied by a concomitant decrease in TR protein levels in the matched cancerous tissues in 31% of tissues compared by immunoblotting with the adjacent noncancerous tissues. Further, TR and DKK4 expression levels were positively correlated in both normal and cancerous specimens by tissue array analysis. In function assays, stable DKK4 transfected into J7 or HepG2 cells decreased cell invasion in vitro. Conversely, knocking down DKK4 restores cell invasiveness. DKK4‐expressing J7 clones showed increased degradation of β‐catenin, but down‐regulation of CD44, cyclin D1, and c‐Jun. To investigate the effect of DKK4 and TR on tumor growth in vivo, we established a xenograft of J7 cells in nude mice. J7‐DKK4 and J7‐TRα1 overexpressing mice, which displayed growth arrest, lower lung colony formation index, and smaller tumor size than in control mice, supporting an inhibitory role of DKK4 in tumor progression. Conclusion: Taken together, these data suggest that the TR/DKK4/Wnt/β‐catenin cascade influences the proliferation and migration of hepatoma cells during the metastasis process and support a tumor suppressor role of the TR. (Hepatology 2012)


Molecular & Cellular Proteomics | 2012

Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells

Cheng-Yi Chen; Lang-Ming Chi; Hsiang-Cheng Chi; Ming-Ming Tsai; Chung-Ying Tsai; Yi-Hsin Tseng; Yang-Hsiang Lin; Wei-Jan Chen; Ya-Hui Huang; Kwang-Huei Lin

The thyroid hormone, 3, 3′,5-triiodo-l-thyronine (T3), regulates cell growth, development, differentiation, and metabolism via interactions with thyroid hormone receptors (TRs). However, the secreted proteins that are regulated by T3 are yet to be characterized. In this study, we used the quantitative proteomic approach of stable isotope labeling with amino acids in cell culture coupled with nano-liquid chromatography-tandem MS performed on a LTQ-Orbitrap instrument to identify and characterize the T3-regulated proteins secreted in human hepatocellular carcinoma cell lines overexpressing TRα1 (HepG2-TRα1). In total, 1742 and 1714 proteins were identified and quantified, respectively, in three independent experiments. Among these, 61 up-regulated twofold and 11 down-regulated twofold proteins were identified. Eight proteins displaying increased expression and one with decreased expression in conditioned media were validated using Western blotting. Real-time quantitative RT-PCR further disclosed induction of plasminogen activator inhibitor-1 (PAI-1), a T3 target, in a time-course and dose-dependent manner. Serial deletions of the PAI-1 promoter region and subsequent chromatin immunoprecipitation assays revealed that the thyroid hormone response element on the promoter is localized at positions –327/–312. PAI-1 overexpression enhanced tumor growth and migration in a manner similar to what was seen when T3 induced PAI-1 expression in J7-TRα1 cells, both in vitro and in vivo. An in vitro neutralizing assay further supported a crucial role of secreted PAI-1 in T3/TR-regulated cell migration. To our knowledge, these results demonstrate for the first time that proteins involved in the urokinase plasminogen activator system, including PAI-1, uPAR, and BSSP4, are augmented in the extra- and intracellular space of T3-treated HepG2-TRα1 cells. The T3-regulated secretome generated in the current study may provide an opportunity to establish the mechanisms underlying T3-associated tumor progression and prognosis.


PLOS ONE | 2012

Glyoxalase-I is a novel prognosis factor associated with gastric cancer progression.

Wan-Li Cheng; Ming-Ming Tsai; Chung-Ying Tsai; Ya-Hui Huang; Cheng-Yi Chen; Hsiang Cheng Chi; Yi-Hsin Tseng; Im-Wai Chao; Wei-Chi Lin; Sheng-Ming Wu; Ying Liang; Chia-Jung Liao; Yang-Hsiang Lin; I-Hsiao Chung; Wei-Jan Chen; Paul Y. Lin; Chia-Siu Wang; Kwang-Huei Lin

Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank P = 0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer.


Journal of Hepatology | 2015

Repression of microRNA-130b by thyroid hormone enhances cell motility

Yang-Hsiang Lin; Meng-Han Wu; Chia-Jung Liao; Ya-Hui Huang; Hsiang-Cheng Chi; Sheng-Ming Wu; Cheng-Yi Chen; Yi-Hsin Tseng; Chung-Ying Tsai; I-Hsiao Chung; Ming-Ming Tsai; Ching-Ying Chen; Tina P. Lin; Yung-Hsin Yeh; Wei-Jan Chen; Kwang-Huei Lin

BACKGROUND & AIMS Thyroid hormone (T3) and its receptor (TR) are involved in cell growth and cancer progression. Although deregulation of microRNA (miRNA) expression has been detected in many tumor types, the mechanisms underlying functional impairment and specific involvement of miRNAs in tumor metastasis remain unclear. In the current study, we aimed to elucidate the involvement of deregulated miRNA-130b (miR-130b) and its target genes mediated by T3/TR in cancer progression. METHODS Quantitative reverse transcription-PCR, luciferase and chromatin immunoprecipitation assays were performed to identify the miR-130b transcript and the mechanisms implicated in its regulation. The effects of miR-130b on hepatocellular carcinoma (HCC) invasion were further examined in vitro and in vivo. Clinical correlations among miR-130b, TRs and interferon regulatory factor 1 (IRF1) were examined in HCC samples using Spearman correlation analysis. RESULTS Our experiments disclosed negative regulation of miR-130b expression by T3/TR. Overexpression of miR-130b led to marked inhibition of cell migration and invasion, which was mediated via suppression of IRF1. Cell migration ability was promoted by T3, but partially suppressed upon miR-130b overexpression. Furthermore, miR-130b suppressed expression of epithelial-mesenchymal transition (EMT)-related genes, matrix metalloproteinase-9, phosphorylated mammalian target of rapamycin (mTOR), p-ERK1/2, p-AKT and p-signal transducer and activator of transcription (STAT)-3. Notably, miR-130b was downregulated in hepatoma samples and its expression patterns were inversely correlated with those of TRα1 and IRF1. CONCLUSIONS Our data collectively highlight a novel pathway interlinking T3/TR, miR-130b, IRF1, the EMT-related genes, p-mTOR, p-STAT3 and the p-AKT cascade, which regulates the motility and invasion of hepatoma cells.


BioMed Research International | 2013

Molecular Functions of Thyroid Hormones and Their Clinical Significance in Liver-Related Diseases

Hsiang Cheng Chi; Cheng-Yi Chen; Ming-Ming Tsai; Chung-Ying Tsai; Kwang-Huei Lin

Thyroid hormones (THs) are potent mediators of several physiological processes, including embryonic development, cellular differentiation, metabolism, and cell growth. Triiodothyronine (T3) is the most biologically active TH form. Thyroid hormone receptors (TRs) belong to the nuclear receptor superfamily and mediate the biological functions of T3 via transcriptional regulation. TRs generally form heterodimers with the retinoid X receptor (RXR) and regulate target genes upon T3 stimulation. Research over the past few decades has revealed that disruption of cellular TH signaling triggers chronic liver diseases, including alcoholic or nonalcoholic fatty liver disease and hepatocellular carcinoma (HCC). Animal model experiments and epidemiologic studies to date imply close associations between high TH levels and prevention of liver disease. Moreover, several investigations spanning four decades have reported the therapeutic potential of T3 analogs in lowering lipids, preventing chronic liver disease, and as anticancer agents. Thus, elucidating downstream genes/signaling pathways and molecular mechanisms of TH actions is critical for the treatment of significant public health issues. Here, we have reviewed recent studies focusing on the roles of THs and TRs in several disorders, in particular, liver diseases. We also discuss the potential therapeutic applications of THs and underlying molecular mechanisms.


Cancer Science | 2012

Overexpression of ADP-ribosylation factor 1 in human gastric carcinoma and its clinicopathological significance

Ming-Ming Tsai; Paul Y. Lin; Wan-Li Cheng; Chung-Ying Tsai; Hsiang-Cheng Chi; Cheng-Yi Chen; Yi-Hsin Tseng; Yi-Fen Cheng; Chi-De Chen; Ying Liang; Chia-Jung Liao; Sheng-Ming Wu; Yang-Hsiang Lin; I-Hsiao Chung; Chia-Siu Wang; Kwang-Huei Lin

Gastric cancer is the sixth leading cause of cancer‐related death in Taiwan, and the identification of related factors is essential to increase patient survival. ADP‐ribosylation factor 1 (ARF1) was initially identified using 2‐D electrophoresis combined with MALDI–time‐of‐flight mass spectrometry. ADP‐ribosylation factor 1 belongs to the Ras superfamily or GTP‐binding protein family and has been shown to enhance cell proliferation. In the current study, we evaluated the potential of ARF1 as a biomarker for gastric cancer detection. ADP‐ribosylation factor 1 mRNA was upregulated in tumor tissues (compared with adjacent non‐tumor tissues, n = 55) in approximately 67.2% of gastric cancer patients. Expression of ARF1 protein was additionally observed using Western blot and immunohistochemistry (IHC) analyses. The clinicopathological correlations of ARF1 were further evaluated. Elevated ARF1 expression was strongly correlated with lymph node metastasis (P = 0.008), serosal invasion (P = 0.046), lymphatic invasion (P = 0.035), and pathological staging (P = 0.010). Moreover, the 5‐year survival rate for the lower ARF1 expression group (n = 50; IHC score < 90) was higher than that of the higher expression group (n = 60; IHC score ≥ 90) (P = 0.0228, log–rank test). To establish the specific function of ARF1 in human gastric cancer, isogenic ARF1‐overexpressing cell lines were prepared. Our results showed that ARF1‐overexpressing clones display enhanced cell proliferation, migration, and invasion. Furthermore, ARF1‐overexpression might contribute to poor prognosis of patients. These findings collectively support the utility of ARF1 as a novel prognostic marker for gastric cancer and its role in cell invasion. Cancer Sci 2012; 103: 1136–1144)


International Journal of Molecular Sciences | 2015

Biological functions of thyroid hormone in placenta.

Cheng-Yi Chen; Chie-Pein Chen; Kwang-Huei Lin

The thyroid hormone, 3,3,5-triiodo-l-thyronine (T3), modulates several physiological processes, including cellular growth, differentiation, metabolism, inflammation and proliferation, via interactions with thyroid hormone response elements (TREs) in the regulatory regions of target genes. Infection and inflammation are critical processes in placental development and pregnancy-related diseases. In particular, infection is the leading cause of neonatal mortality and morbidity worldwide. However, to date, no successful approach has been developed for the effective diagnosis of infection in preterm infants. Pre-eclampsia (PE) is a serious disorder that adversely affects ~5% of human pregnancies. Recent studies identified a multiprotein complex, the inflammasome, including the Nod-like receptor (NLR) family of cytosolic pattern recognition receptors, the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1, which plays a vital role in the placenta. The thyroid hormone modulates inflammation processes and is additionally implicated in placental development and disease. Therefore, elucidation of thyroid hormone receptor-regulated inflammation-related molecules, and their underlying mechanisms in placenta, should facilitate the identification of novel predictive and therapeutic targets for placental disorders. This review provides a detailed summary of current knowledge with respect to identification of useful biomarkers and their physiological significance in placenta.


Biochimica et Biophysica Acta | 2013

Biological significance of a thyroid hormone-regulated secretome.

Cheng-Yi Chen; Ming-Ming Tsai; Hsiang-Cheng Chi; Kwang-Huei Lin

The thyroid hormone, 3,3,5-triiodo-L-thyronine (T3), modulates several physiological processes, including cellular growth, differentiation, metabolism and proliferation, via interactions with thyroid hormone response elements (TREs) in the regulatory regions of target genes. Several intracellular and extracellular protein candidates are regulated by T3. Moreover, T3-regulated secreted proteins participate in physiological processes or cellular transformation. T3 has been employed as a marker in several disorders, such as cardiovascular disorder in chronic kidney disease, as well as diseases of the liver, immune system, endocrine hormone metabolism and coronary artery. Our group subsequently showed that T3 regulates several tumor-related secretory proteins, leading to cancer progression via alterations in extracellular matrix proteases and tumor-associated signaling pathways in hepatocellular carcinomas. Therefore, elucidation of T3/thyroid hormone receptor-regulated secretory proteins and their underlying mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a detailed summary on the known secretory proteins regulated by T3 and their physiological significance. This article is part of a Special Issue entitled: An Updated Secretome.

Collaboration


Dive into the g-Yi Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Ming Tsai

Chang Gung University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chia-Siu Wang

Memorial Hospital of South Bend

View shared research outputs
Researchain Logo
Decentralizing Knowledge