Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheng-Zhi Peng is active.

Publication


Featured researches published by Cheng-Zhi Peng.


Nature Photonics | 2012

Observation of eight-photon entanglement

Xing-Can Yao; Tian-Xiong Wang; Ping Xu; He Lu; Ge-Sheng Pan; Xiao-Hui Bao; Cheng-Zhi Peng; Chao-Yang Lu; Yu-Ao Chen; Jian-Wei Pan

Researchers demonstrate the creation of an eight-photon Schrodinger-cat state with genuine multipartite entanglement by developing noise-reduction multiphoton interferometer and post-selection detection. The ability to control eight individual photons will enable new multiphoton entanglement experiments in previously inaccessible parameter regimes.


Nature | 2012

Quantum teleportation and entanglement distribution over 100-kilometre free-space channels

Juan Yin; Ji-Gang Ren; He Lu; Yuan Cao; Hai-Lin Yong; Yu-Ping Wu; C. Liu; Sheng-Kai Liao; Fei Zhou; Yan Jiang; Xin-Dong Cai; Ping Xu; Ge-Sheng Pan; Jianjun Jia; Yong-Mei Huang; Hao Yin; Jianyu Wang; Yu-Ao Chen; Cheng-Zhi Peng; Jian-Wei Pan

Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser–Horne–Shimony–Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.


Nature Physics | 2010

Experimental demonstration of a hyper-entangled ten-qubit Schr|[ouml]|dinger cat state

Wei-Bo Gao; Chao-Yang Lu; Xing-Can Yao; Ping Xu; Otfried Gühne; Alexander Goebel; Yu-Ao Chen; Cheng-Zhi Peng; Zeng-Bing Chen; Jian-Wei Pan

Creating entangled photon states becomes technologically ever more difficult as the number of particles increases, and the current record stands at six entangled photons. However, using both their polarization and momentum degrees of freedom, up to ten-qubit states can be encoded in ‘only’ five photons, as has now been demonstrated.


Optics Express | 2010

Decoy-state quantum key distribution with polarized photons over 200 km

Yang Liu; Teng-Yun Chen; Jian Wang; Wen-Qi Cai; Xu Wan; Luo-Kan Chen; Jin-Hong Wang; Shu-Bin Liu; Hao Liang; Lin Yang; Cheng-Zhi Peng; Kai Chen; Zeng-Bing Chen; Jian-Wei Pan

We report an implementation of decoy-state quantum key distribution (QKD) over 200 km optical fiber cable through photon polarization encoding. This is achieved by constructing the whole QKD system operating at 320 MHz repetition rate, and developing high-speed transmitter and receiver modules. A novel and economic way of synchronization method is designed and incorporated into the system, which allows to work at a low frequency of 40kHz and removes the use of highly precise clock. A final key rate of 15 Hz is distributed within the experimental time of 3089 seconds, by using super-conducting single photon detectors. This is longest decoy-state QKD yet demonstrated up to date. It helps to make a significant step towards practical secure communication in long-distance scope.We demonstrate the decoy-state quantum key distribution ov er 200 km with photon polarization through optical fiber, by usi ng superconducting single photon detector with a repetition rate of 320 Mega Hz and a dark count rate of lower than 1 Hz. Since we have used the pola rization coding, the synchronization pulses can be run in a low freque ncy. The final key rate is 14.1 Hz. The experiment lasts for 3089 seconds wit h 43555 total final bits.


Science | 2017

Satellite-based entanglement distribution over 1200 kilometers

Juan Yin; Yuan Cao; Yu-Huai Li; Sheng-Kai Liao; Liang Zhang; Ji-Gang Ren; Wen-Qi Cai; Weiyue Liu; Bo Li; Hui Dai; Guang-Bing Li; Qi-Ming Lu; Yun-Hong Gong; Yu Xu; Shuang-Lin Li; Feng-Zhi Li; Ya-Yun Yin; Ziqing Jiang; Ming Li; Jianjun Jia; Ge Ren; Dong He; Yi-Lin Zhou; Xiao-Xiang Zhang; Na Wang; Xiang Chang; Zhen-Cai Zhu; Nai-Le Liu; Yu-Ao Chen; Chao-Yang Lu

Entangled photons are distributed over vast distances using a satellite-to-ground link. Space calling Earth, on the quantum line A successful quantum communication network will rely on the ability to distribute entangled photons over large distances between receiver stations. So far, free-space demonstrations have been limited to line-of-sight links across cities or between mountaintops. Scattering and coherence decay have limited the link separations to around 100 km. Yin et al. used the Micius satellite, which was launched last year and is equipped with a specialized quantum optical payload. They successfully demonstrated the satellite-based entanglement distribution to receiver stations separated by more than 1200 km. The results illustrate the possibility of a future global quantum communication network. Science, this issue p. 1140 Long-distance entanglement distribution is essential for both foundational tests of quantum physics and scalable quantum networks. Owing to channel loss, however, the previously achieved distance was limited to ~100 kilometers. Here we demonstrate satellite-based distribution of entangled photon pairs to two locations separated by 1203 kilometers on Earth, through two satellite-to-ground downlinks with a summed length varying from 1600 to 2400 kilometers. We observed a survival of two-photon entanglement and a violation of Bell inequality by 2.37 ± 0.09 under strict Einstein locality conditions. The obtained effective link efficiency is orders of magnitude higher than that of the direct bidirectional transmission of the two photons through telecommunication fibers.


Nature Photonics | 2013

Direct and full-scale experimental verifications towards ground-satellite quantum key distribution

Jianyu Wang; Bin Yang; Sheng-Kai Liao; Liang Zhang; Qi Shen; Xiaofang Hu; Jincai Wu; Shiji Yang; Hao Jiang; Yan-Lin Tang; Bo Zhong; Hao Liang; Weiyue Liu; Yihua Hu; Yong-Mei Huang; Bo Qi; Ji-Gang Ren; Ge-Sheng Pan; Juan Yin; Jianjun Jia; Yu-Ao Chen; Kai Chen; Cheng-Zhi Peng; Jian-Wei Pan

Full-scale verifications for establishing quantum cryptography communication via satellites are reported. Three independent experiments using a hot-air balloon are performed: on a rapidly moving platform over a distance of 40 km, on a floating platform over a distance of 20 km, and over 96 km in air with a huge loss.


Optics Express | 2010

Metropolitan all-pass and inter-city quantum communication network

Teng-Yun Chen; Jian Wang; Hao Liang; Weiyue Liu; Yang Liu; Xiao Jiang; Yuan Wang; Xu Wan; Wen-Qi Cai; Lei Ju; Luo-Kan Chen; Liu-Jun Wang; Yuan Gao (高原); Kai Chen; Cheng-Zhi Peng; Zeng-Bing Chen; Jian-Wei Pan

We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60 km.


Physical Review Letters | 2005

Experimental quantum secret sharing and third-man quantum cryptography.

Yu-Ao Chen; An-Ning Zhang; Zhi Zhao; Xiao-Qi Zhou; Chao-Yang Lu; Cheng-Zhi Peng; Tao Yang; Jian-Wei Pan

Quantum secret sharing (QSS) and third-man quantum cryptography (TQC) are essential for advanced quantum communication; however, the low intensity and fragility of the multiphoton entanglement source in previous experiments have made their realization an extreme experimental challenge. Here, we develop and exploit an ultrastable high intensity source of four-photon entanglement to report an experimental realization of QSS and TQC. The technology developed in our experiment will be important for future multiparty quantum communication.


conference on lasers and electro optics | 2014

Lower Bound on the Speed of Nonlocal Correlations without Locality and Measurement Choice Loopholes

Juan Yin; Yuan Cao; Hai-Lin Yong; Ji-Gang Ren; Hao Liang; Sheng-Kai Liao; Fei Zhou; C. Liu; Yu-Ping Wu; Ge-Sheng Pan; Li Li; Nai-Le Liu; Cheng-Zhi Peng; Jian-Wei Pan

In the well-known EPR paper, Einstein et al. called the nonlocal correlation in quantum entanglement as ‘spooky action at a distance’. If the spooky action does exist, what is its speed? All previous experiments along this direction have locality and freedom-of-choice loopholes. Here, we strictly closed the loopholes by observing a 12-hour continuous violation of Bell inequality and concluded that the lower bound speed of ‘spooky action’ was four orders of magnitude of the speed of light if the Earth’s speed in any inertial reference frame was less than 10−3 times of the speed of light. [∗] Author to whom correspondence should be addressed; electronic mail: [email protected], [email protected] and [email protected]. 1 ar X iv :1 30 3. 06 14 v2 [ qu an tph ] 1 8 Ju n 20 13 In order to test the speed of ‘spooky action at a distance’[1], Eberhard proposed[2] a 12hour continuous space-like Bell inequality [3, 4] measurement over a long east-west oriented distance. Benefited from the Earth self rotation, the measurement would be ergodic over all possible translation frames and as a result, the bound of the speed would be universal[2, 5] . Salart et al.[5] recently report to have achieved the lower bound of ‘spooky action’ through an experiment using Eberhard’s proposal. In that experiment, time-bin entangled photon pairs were distributed over two sites, both equipped with a Franson-type interferometer[6] to analyze the photon pairs. At one site, the phase of the interferometer was kept stable and the phase of the interferometer at the other site was continuously scanned. An interference fringe of 87.6% was achieved, which was high enough for a violation of the CHSH-Bell inequality. However any bipartite Bell test requires at least two settings at each site because if there was only one setting, one could always achieve the same interference fringe with a product state without any entanglement. Moreover, as pointed out by Kofler et al.[7], even if the phase of the first site had a second setting, the experiment still had locality loophole, because the setting choice on one site could not be space-like separated from either the measurement events at the other site or the entanglement source generation event[8–10]. Due to these loopholes, the experiment could be explained by common causes[7] instead of ‘spook action’. Actually, similar loopholes existed in all previous attempts for the speed measurement of ‘spooky action’[11–13]. Here, we distributed entangled photon pairs over two site that were 16-km apart sites via free space optical link and implemented a space-like Bell test [3, 4] to close the locality loophole. Meanwhile, we utilized fast electro optic modulators (EOMs) to address the freedom-of-choice loophole. As almost all the photonic Bell experiment[10, 14–16], we utilized fair sampling assumption to address the detection loophole[17]. This assumption is justified by J. S. Bell himself’s comments[15, 18], “. . . it is hard for me to believe that quantum mechanics works so nicely for inefficient practical set-ups and is yet going to fail badly when sufficient refinements are made. Of more importance, in my opinion, is the complete absence of the vital time factor in existing experiments. The analyzers are not rotated during the flight of the particles.” Our two sites are east-west oriented sites at the same latitude as Eberhard proposed[2]. Suppose two events occur in the two sites, respectively at positions ~ rA and ~ rB at time tA


Physical Review Letters | 2010

Experimental Realization of a Controlled-NOT Gate with Four-Photon Six-Qubit Cluster States

Wei-Bo Gao; Ping Xu; Xing-Can Yao; Otfried Gühne; Adan Cabello; Chao-Yang Lu; Cheng-Zhi Peng; Zeng-Bing Chen; Jian-Wei Pan

We experimentally demonstrate an optical controlled-NOT (CNOT) gate with arbitrary single inputs based on a 4-photon 6-qubit cluster state entangled both in polarization and spatial modes. We first generate the 6-qubit state, and then, by performing single-qubit measurements, the CNOT gate is applied to arbitrary single input qubits. To characterize the performance of the gate, we estimate its quantum process fidelity and prove its entangling capability. In addition, our results show that the gate cannot be reproduced by local operations and classical communication. Our experiment shows that such hyper-entangled cluster states are promising candidates for efficient optical quantum computation.

Collaboration


Dive into the Cheng-Zhi Peng's collaboration.

Top Co-Authors

Avatar

Jian-Wei Pan

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Sheng-Kai Liao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yu-Ao Chen

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Cao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Juan Yin

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Chao-Yang Lu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Qiang Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Teng-Yun Chen

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Ji-Gang Ren

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge