Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengbiao Wu is active.

Publication


Featured researches published by Chengbiao Wu.


Neuron | 2003

NGF Signaling in Sensory Neurons: Evidence that Early Endosomes Carry NGF Retrograde Signals

Jean-Dominique Delcroix; Janice S. Valletta; Chengbiao Wu; Stephen J. Hunt; Anthony S. Kowal; William C. Mobley

Target-derived NGF promotes the phenotypic maintenance of mature dorsal root ganglion (DRG) nociceptive neurons. Here, we provide in vivo and in vitro evidence for the presence within DRG neurons of endosomes containing NGF, activated TrkA, and signaling proteins of the Rap1/Erk1/2, p38MAPK, and PI3K/Akt pathways. Signaling endosomes were shown to be retrogradely transported in the isolated sciatic nerve in vitro. NGF injection in the peripheral target of DRG neurons increased the retrograde transport of p-Erk1/2, p-p38, and pAkt in these membranes. Conversely, NGF antibody injections decreased the retrograde transport of p-Erk1/2 and p-p38. Our results are evidence that signaling endosomes, with the characteristics of early endosomes, convey NGF signals from the target of nociceptive neurons to their cell bodies.


Neuron | 2006

Increased App Expression in a Mouse Model of Down's Syndrome Disrupts NGF Transport and Causes Cholinergic Neuron Degeneration

Ahmad Salehi; Jean Dominique Delcroix; Pavel V. Belichenko; Ke Zhan; Chengbiao Wu; Janice S. Valletta; Ryoko Takimoto-Kimura; Alexander M. Kleschevnikov; Kumar Sambamurti; Peter Chung; Weiming Xia; Angela J. Villar; William A. Campbell; Laura Shapiro Kulnane; Ralph A. Nixon; Bruce T. Lamb; Charles J. Epstein; Gorazd B. Stokin; Lawrence S.B. Goldstein; William C. Mobley

Degeneration of basal forebrain cholinergic neurons (BFCNs) contributes to cognitive dysfunction in Alzheimers disease (AD) and Downs syndrome (DS). We used Ts65Dn and Ts1Cje mouse models of DS to show that the increased dose of the amyloid precursor protein gene, App, acts to markedly decrease NGF retrograde transport and cause degeneration of BFCNs. NGF transport was also decreased in mice expressing wild-type human APP or a familial AD-linked mutant APP; while significant, the decreases were less marked and there was no evident degeneration of BFCNs. Because of evidence suggesting that the NGF transport defect was intra-axonal, we explored within cholinergic axons the status of early endosomes (EEs). NGF-containing EEs were enlarged in Ts65Dn mice and their App content was increased. Our study thus provides evidence for a pathogenic mechanism for DS in which increased expression of App, in the context of trisomy, causes abnormal transport of NGF and cholinergic neurodegeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2007

One at a time, live tracking of NGF axonal transport using quantum dots

Bianxiao Cui; Chengbiao Wu; Liang Chen; Alfredo Ramirez; Elaine L. Bearer; Wei-Ping Li; William C. Mobley; Steven Chu

Retrograde axonal transport of nerve growth factor (NGF) signals is critical for the survival, differentiation, and maintenance of peripheral sympathetic and sensory neurons and basal forebrain cholinergic neurons. However, the mechanisms by which the NGF signal is propagated from the axon terminal to the cell body are yet to be fully elucidated. To gain insight into the mechanisms, we used quantum dot-labeled NGF (QD-NGF) to track the movement of NGF in real time in compartmentalized culture of rat dorsal root ganglion (DRG) neurons. Our studies showed that active transport of NGF within the axons was characterized by rapid, unidirectional movements interrupted by frequent pauses. Almost all movements were retrograde, but short-distance anterograde movements were occasionally observed. Surprisingly, quantitative analysis at the single molecule level demonstrated that the majority of NGF-containing endosomes contained only a single NGF dimer. Electron microscopic analysis of axonal vesicles carrying QD-NGF confirmed this finding. The majority of QD-NGF was found to localize in vesicles 50–150 nm in diameter with a single lumen and no visible intralumenal membranous components. Our findings point to the possibility that a single NGF dimer is sufficient to sustain signaling during retrograde axonal transport to the cell body.


Proceedings of the National Academy of Sciences of the United States of America | 2006

TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology.

Yuki Miyamoto; Junji Yamauchi; Akito Tanoue; Chengbiao Wu; William C. Mobley

Small GTPases of the Rho family play key roles in the formation of neuronal axons and dendrites by transducing signals from guidance cues, such as neurotrophins, to the actin cytoskeleton. However, there is little insight into the mechanism by which neurotrophins regulate Rho GTPases. Here, we show the crucial role of the ubiquitous Rac1-specific guanine nucleotide exchange factor, Tiam1 (T lymphoma invasion and metastasis 1), in transducing a neurotrophin-mediated change in cell shape. We demonstrate that BDNF, acting through TrkB, directly binds and specifically activates Tiam1 by phosphorylating Tyr-829, leading to Rac1 activation and lamellipodia formation in Cos-7 cells and increased neurite outgrowth from cortical neurons. A point mutation in Tiam1, Tyr-829 to Phe-829, blocked these BDNF-induced changes in cellular morphology. The findings are evidence of a previously uncharacterized mechanism for the activation of Tiam1 and of a role for this effector in neurotrophin-mediated signal transduction leading to changes in cellular morphology.


Nature Medicine | 2013

Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome

Xin Wang; Yingjun Zhao; Xiaofei Zhang; Hedieh Badie; Ying Zhou; Yangling Mu; Li Shen Loo; Lei Cai; Robert Thompson; Bo Yang; Yaomin Chen; Peter F. Johnson; Chengbiao Wu; Guojun Bu; William C. Mobley; Dongxian Zhang; Fred H. Gage; Barbara Ranscht; Yun Wu Zhang; Stuart A. Lipton; Wanjin Hong; Huaxi Xu

Sorting nexin 27 (SNX27), a brain-enriched PDZ domain protein, regulates endocytic sorting and trafficking. Here we show that Snx27−/− mice have severe neuronal deficits in the hippocampus and cortex. Although Snx27+/− mice have grossly normal neuroanatomy, we found defects in synaptic function, learning and memory and a reduction in the amounts of ionotropic glutamate receptors (NMDA and AMPA receptors) in these mice. SNX27 interacts with these receptors through its PDZ domain, regulating their recycling to the plasma membrane. We demonstrate a concomitant reduced expression of SNX27 and CCAAT/enhancer binding protein β (C/EBPβ) in Downs syndrome brains and identify C/EBPβ as a transcription factor for SNX27. Downs syndrome causes overexpression of miR-155, a chromosome 21–encoded microRNA that negatively regulates C/EBPβ, thereby reducing SNX27 expression and resulting in synaptic dysfunction. Upregulating SNX27 in the hippocampus of Downs syndrome mice rescues synaptic and cognitive deficits. Our identification of the role of SNX27 in synaptic function establishes a new molecular mechanism of Downs syndrome pathogenesis.


The Journal of Comparative Neurology | 2009

Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome.

Pavel V. Belichenko; Alexander M. Kleschevnikov; Eliezer Masliah; Chengbiao Wu; Ryoko Takimoto-Kimura; Ahmad Salehi; William C. Mobley

Down syndrome (DS) is a neurological disorder causing impaired learning and memory. Partial trisomy 16 mice (Ts65Dn) are a genetic model for DS. Previously, we demonstrated widespread alterations of pre‐ and postsynaptic elements and physiological abnormalities in Ts65Dn mice. The average diameter of presynaptic boutons and spines in the neocortex and hippocampus was enlarged. Failed induction of long‐term potentiation (LTP) due to excessive inhibition was observed. In this paper we investigate the morphological substrate for excessive inhibition in Ts65Dn. We used electron microscopy (EM) to characterize synapses, confocal microscopy to analyze colocalization of the general marker for synaptic vesicle protein with specific protein markers for inhibitory and excitatory synapses, and densitometry to characterize the distribution of the receptor and several proteins essential for synaptic clustering of neurotransmitter receptors. EM analysis of synapses in the Ts65Dn vs. 2N showed that synaptic opposition lengths were significantly greater for symmetric synapses (∼18%), but not for asymmetric ones. Overall, a significant increase in colocalization coefficients of glutamic acid decarboxylase (GAD)65/p38 immunoreactivity (IR) (∼27%) and vesicular GABA transporter (VGAT)/p38 IR (∼41%) was found, but not in vesicular glutamate transporter 1 (VGLUT1)/p38 IR. A significant overall decrease of IR in the hippocampus of Ts65Dn mice compared with 2N mice for glutamate receptor 2 (GluR2; ∼13%) and anti‐γ‐aminobutyric acid (GABA)A receptor β2/3 subunit (∼20%) was also found. The study of proteins essential for synaptic clustering of receptors revealed a significant increase in puncta size for neuroligin 2 (∼13%) and GABAA receptor‐associated protein (GABARAP; ∼13%), but not for neuroligin 1 and gephyrin. The results demonstrate a significant alteration of inhibitory synapses in the fascia dentata of Ts65Dn mice. J. Comp. Neurol. 512:453–466, 2009.


Translational neurodegeneration | 2012

Current advances in using neurotrophic factors to treat neurodegenerative disorders.

April M. Weissmiller; Chengbiao Wu

Neurotrophic factors are best known for their roles in both development and continued maintenance of the nervous system. Their strong potential to elicit pro-survival and pro-functional responses in neurons of the peripheral and central nervous system make them good drug candidates for treatment of a multitude of neurodegenerative disorders. However, significant obstacles remain and need to be overcome before translating the potential of neurotrophins into the therapeutic arena. This article addresses current efforts and advances in resolving these challenges and provides an overview of roadmaps for future translational research and neurotrophin-based drug developments.


Journal of Proteomics | 2009

The coming of age of axonal neurotrophin signaling endosomes

Chengbiao Wu; Bianxiao Cui; Lingmin He; Liang Chen; William C. Mobley

Neurons of both the central and the peripheral nervous system are critically dependent on neurotrophic signals for their survival and differentiation. The trophic signal is originated at the axonal terminals that innervate the target(s). It has been well established that the signal must be retrogradely transported back to the cell body to exert its trophic effect. Among the many forms of transmitted signals, the signaling endosome serves as a primary means to ensure that the retrograde signal is delivered to the cell body with sufficient fidelity and specificity. Recent evidence suggests that disruption of axonal transport of neurotrophin signals may contribute to neurodegenerative diseases such as Alzheimers disease and Down syndrome. However, the identity of the endocytic vesicular carrier(s), and the mechanisms involved in retrogradely transporting the signaling complexes remain a matter of debate. In this review, we summarize current insights that are mainly based on classical hypothesis-driven research, and we emphasize the urgent needs to carry out proteomics to resolve the controversies in the field.


The Journal of Neuroscience | 2013

Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling.

Kai Zhang; Rotem Fishel Ben Kenan; Yasuko Osakada; Wei Xu; Rachel S. Sinit; Liang Chen; Xiaobei Zhao; Jia-Yun Chen; Bianxiao Cui; Chengbiao Wu

Retrograde trophic signaling of nerve growth factor (NGF) supports neuronal survival and differentiation. Dysregulated trophic signaling could lead to various neurological disorders. Charcot-Marie-Tooth type 2B (CMT2B) is one of the most common inherited peripheral neuropathies characterized by severe terminal axonal loss. Genetic analysis of human CMT2B patients has revealed four missense point mutations in Rab7, a small GTPase that regulates late endosomal/lysosomal pathways, but the exact pathological mechanism remains poorly understood. Here, we show that these Rab7 mutants dysregulated axonal transport and diminished the retrograde signaling of NGF and its TrkA receptor. We found that all CMT2B Rab7 mutants were transported significantly faster than Rab7wt in the anterograde direction, accompanied with an increased percentile of anterograde Rab7-vesicles within axons of rat E15.5 dorsal root ganglion (DRG) neurons. In PC12M cells, the CMT2B Rab7 mutants drastically reduced the level of surface TrkA and NGF binding, presumably by premature degradation of TrkA. On the other hand, siRNA knock-down of endogenous Rab7 led to the appearance of large TrkA puncta in enlarged Rab5-early endosomes within the cytoplasm, suggesting delayed TrkA degradation. We also show that CMT2B Rab7 mutants markedly impaired NGF-induced Erk1/2 activation and differentiation in PC12M cells. Further analysis revealed that CMT2B Rab7 mutants caused axonal degeneration in rat E15.5 DRG neurons. We propose that Rab7 mutants induce premature degradation of retrograde NGF-TrkA trophic signaling, which may potentially contribute to the CMT2B disease.


Traffic | 2007

A Functional Dynein–Microtubule Network Is Required for NGF Signaling Through the Rap1/MAPK Pathway

Chengbiao Wu; Alfredo Ramirez; Bianxiao Cui; Jianqing Ding; Jean-Dominique Delcroix; Janice S. Valletta; Jia-Jia Liu; Yanmin Yang; Steven Chu; William C. Mobley

Rap1 transduces nerve growth factor (NGF)/tyrosine receptor kinase A (TrkA) signaling in early endosomes, leading to sustained activation of the p44/p42 mitogen‐activated protein kinases (MAPK1/2). However, the mechanisms by which NGF, TrkA and Rap1 are trafficked to early endosomes are poorly defined. We investigated trafficking and signaling of NGF, TrkA and Rap1 in PC12 cells and in cultured rat dorsal root ganglion (DRG) neurons. Herein, we show a role for both microtubule‐ and dynein‐based transport in NGF signaling through MAPK1/2. NGF treatment resulted in trafficking of NGF, TrkA and Rap1 to early endosomes in the perinuclear region of PC12 cells where sustained activation of MAPK1/2 was observed. Disruption of microtubules with nocodazole in PC12 cells had no effect on the activation of TrkA and Ras. However, it disrupted intracellular trafficking of TrkA and Rap1. Moreover, NGF‐induced activation of Rap1 and sustained activation of MAPK1/2 were markedly suppressed. Inhibition of dynein activity through overexpression of dynamitin (p50) blocked trafficking of Rap1 and the sustained phase of MAPK1/2 activation in PC12 cells. Remarkably, even in the continued presence of NGF, mature DRG neurons that overexpressed p50 became atrophic and most (>80%) developing DRG neurons died. Dynein‐ and microtubule‐based transport is thus necessary for TrkA signaling to Rap1 and MAPK1/2.

Collaboration


Dive into the Chengbiao Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaobei Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Chen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge