Chengbo Yang
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengbo Yang.
Fems Immunology and Medical Microbiology | 2003
Chengbo Yang; Yuan Jiang; Kehe Huang; Changqing Zhu; Yulong Yin
Campylobacter jejuni is a leading human food-borne pathogen. The rapid and sensitive detection of C. jejuni is necessary for the maintenance of a safe food/water supply. In this article, we present a real-time polymerase chain reaction (PCR) assay for quantitative detection of C. jejuni in naturally contaminated poultry, milk and environmental samples without an enrichment step. The whole assay can be completed in 60 min with a detection limit of approximately 1 CFU. The standard curve correlation coefficient for the threshold cycle versus the copy number of initial C. jejuni cells was 0.988. To test the PCR system, a set of 300 frozen chicken meat samples, 300 milk samples and 300 water samples were screened for the presence of C. jejuni. 30.6% (92/300) of chicken meat samples, 27.3% (82/300) of milk samples, and 13.6% (41/300) of water samples tested positive for C. jejuni. This result indicated that the real-time PCR assay provides a specific, sensitive and rapid method for quantitative detection of C. jejuni. Moreover, it is concluded that retail chicken meat, raw milk and environmental water are commonly contaminated with C. jejuni and could serve as a potential risk for consumers in eastern China, especially if proper hygienic and cooking conditions are not maintained.
Journal of Nutritional Biochemistry | 2010
Connie J. Kim; Jennifer Kovacs-Nolan; Chengbo Yang; Tania Archbold; Ming Z. Fan; Yoshinori Mine
Conventional therapies for the treatment of inflammatory bowel disease (IBD) have demonstrated limited efficacy and potential toxicity; therefore, there is a need for novel therapies that can safely and effectively treat IBD. Recent evidence has indicated that amino acids may play a role in maintaining gut health. L-tryptophan has been shown to reduce oxidative stress and improve neurological states. The objective of this study was to assess the therapeutic effects of L-tryptophan in a porcine model of dextran sodium sulfate (DSS)-induced colitis. DSS was administered to piglets via intragastric catheter for 5 days followed by tryptophan administration at 80% of the daily recommended intake. The severity of colitis was assessed macroscopically and histopathologically, and intestinal permeability was monitored in vivo by D-mannitol analysis. The effect of tryptophan on the local expression of key mediators of inflammation and IBD pathogenesis was examined at the protein and gene expression levels. Supplementation with tryptophan ameliorated clinical symptoms and improved weight gain to feed intake conversion ratios. Histological scores and measurements were also improved, and gut permeability was notably reduced in tryptophan-supplemented animals. Moreover, tryptophan reduced the expression of the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-6, interferon (IFN)-gamma, IL-12p40, IL-1beta and IL-17, as well as IL-8 and intracellular adhesion molecule-1, and resulted in increased expression of apoptosis initiators caspase-8 and Bax. These results demonstrate that L-tryptophan supplementation can reduce inflammation and enhance the rate of recovery in DSS-induced colitis and may be an effective immunomodulating agent for the treatment of IBD.
Biochimica et Biophysica Acta | 2009
Connie J. Kim; Jennifer Kovacs-Nolan; Chengbo Yang; Tania Archbold; Ming Z. Fan; Yoshinori Mine
BACKGROUND Inflammatory bowel disease (IBD), a chronic inflammation of the gastrointestinal tract, is characterized by a deregulation of the mucosal immune system and resistance of activated T cells to apoptosis. Current therapeutics show limited efficacy and potential toxicity; therefore there is a need for novel approaches for the treatment of IBD. L-cysteine was examined for its ability to reduce colitis symptoms and modulate local gene expression in a DSS-induced porcine model of colitis. METHODS Colitis was induced via intra-gastric infusion of dextran sodium sulfate (DSS), followed by the administration of L-cysteine or saline. Clinical signs, morphological measurements, histology and gut permeability were assessed for the prognosis of colitis. Local tissue production of cytokines and gene expression in the colon were analyzed by ELISA and real-time RT-PCR. RESULTS L-cysteine supplementation attenuated DSS-induced weight loss and intestinal permeability, reduced local chemokine expression and neutrophil influx, and markedly improved colon histology. Furthermore, cysteine significantly reduced the expression of pro-inflammatory cytokines, including TNF-alpha, IL-6, IL-12p40, IL-1beta, and resulted in increased expression of the apoptosis initiator caspase-8 and decreased expression of the pro-survival genes cFLIP and Bcl-xL. CONCLUSIONS AND GENERAL SIGNIFICANCE These results suggest that L-cysteine administration aids in restoring gut immune homeostasis by attenuating inflammatory responses and restoring susceptibility of activated immune cells to apoptosis, and that cysteine supplementation may be a novel therapeutic strategy for the treatment of IBD.
Journal of Agricultural and Food Chemistry | 2009
Maggie Lee; Jennifer Kovacs-Nolan; Chengbo Yang; Tania Archbold; Ming Z. Fan; Yoshinori Mine
Inflammatory bowel disease (IBD) is a chronic and recurring inflammation of the gastrointestinal tract, associated with a dysregulation of the mucosal immune system. There is an increasing prevalence of IBD; however, current pharmaceutical treatments are only moderately effective and have been associated with potential long-term toxicity. Lysozyme, a well-known antimicrobial protein found in large quantities in hen egg white, is a promising alternative for the treatment of IBD. A porcine model of dextran sodium sulfate (DSS)-induced colitis was used to examine the effect of hen egg lysozyme (HEL) supplementation on intestinal inflammation. Treatment with DSS resulted in weight loss, severe mucosal and submucosal inflammation, colonic crypt distortion, muscle wall thickening, down-regulation of mucin gene expression, and increased gastric permeability, but these symptoms were attenuated following supplementation with HEL and restored to basal levels observed in untreated control animals. Treatment with HEL also significantly reduced the local expression of pro-inflammatory cytokines TNF-alpha, IL-6, IFN-gamma, IL-8, and IL-17 while increasing the expression of the anti-inflammatory mediators IL-4 and TGF-beta, indicating that HEL may function as a potent anti-inflammatory and immunomodulator. Furthermore, the concomitant increases in TGF-beta and Foxp3 levels suggest that HEL may aid in restoring gut homeostasis by activating regulatory T cells, which are important in the regulation of the mucosal immune system. These results suggest that HEL is a promising novel therapeutic for the treatment of IBD.
Journal of Nutrition | 2010
Dale Lackeyram; Chengbo Yang; Tania Archbold; K. C. Swanson; Ming Z. Fan
Expression of the small intestinal alkaline phosphatase (IAP) is enterocyte differentiation dependent and plays essential roles in the detoxification of pathogenic bacterial lipopolysaccharide endotoxin, maintenance of luminal pH, organic phosphate digestion, and fat absorption. This study was conducted to examine the effect of early weaning on adaptive changes in IAP digestive capacity (V(cap)) and IAP gene expression compared with suckling counterparts in pigs at ages 10-22 d. Weaning decreased (P < 0.05) IAP enzyme affinity by 26% and IAP maximal enzyme activity by 22%, primarily in the jejunal region, with the jejunum expressing 84-86% of the whole gut mucosal IAP V(cap) [mol/(kg body weight.d)]. The majority (98%) of the jejunal mucosal IAP maximal activity was associated with the apical membrane and the remaining (2%) existed as the intracellular soluble IAP. Weaning reduced the abundance of the 60-kDa IAP protein associated with the proximal jejunal apical membrane by 64% (P < 0.05). Furthermore, weaning reduced (P < 0.05) the relative abundance of the proximal jejunal IAP mRNA by 58% and this was in association with decreases (P < 0.05) in the abundances of cytoplasmic (27%) and nuclear (29%) origins of IAP caudal-associated homeobox transcription factor 1. In conclusion, early weaning decreased small intestinal IAP V(cap), IAP catalytic affinity, and IAP gene expression, and this may in part contribute to the susceptibility of early-weaned piglets to increased occurrence of enteric diseases and growth-check.
Clinical & Experimental Allergy | 2010
Marie Yang; Chengbo Yang; Yoshinori Mine
Background Peptide‐based immunotherapy (PIT) represents an attractive approach for targeted interventions in immunological disorders, but has not been widely explored in the context of food allergy.
Pathogenetics | 2015
Chengbo Yang; M.A. Chowdhury; Yongqing Huo; Joshua Gong
This article summarizes current experimental knowledge on the efficacy, possible mechanisms and feasibility in the application of phytogenic products as feed additives for food-producing animals. Phytogenic compounds comprise a wide range of plant-derived natural bioactive compounds and essential oils are a major group. Numerous studies have demonstrated that phytogenic compounds have a variety of functions, including antimicrobial/antiviral, antioxidative and anti-inflammation effects and improvement in the palatability of feed and gut development/health. However, the mechanisms underlying their functions are still largely unclear. In the past, there has been a lack of consistency in the results from both laboratory and field studies, largely due to the varied composition of products, dosages, purities and growing conditions of animals used. The minimal inhibitory concentration (MIC) of phytogenic compounds required for controlling enteric pathogens may not guarantee the best feed intake, balanced immunity of animals and cost-effectiveness in animal production. The lipophilic nature of photogenic compounds also presents a challenge in effective delivery to the animal gut and this can partially be resolved by microencapsulation and combination with other compounds (synergistic effect). Interestingly, the effects of photogenic compounds on anti-inflammation, gut chemosensing and possible disruption of bacterial quorum sensing could explain a certain number of studies with different animal species for the better production performance of animals that have received phytogenic feed additives. It is obvious that phytogenic compounds have good potential as an alternative to antibiotics in feed for food animal production and the combination of different phytogenic compounds appears to be an approach to improve the efficacy and safety of phytogenic compounds in the application. It is our expectation that the recent development of high-throughput and “omics” technologies can significantly advance the studies on the mechanisms underlying phytogenic compounds’ functions and, therefore, guide the effective use of the compounds.
Journal of Agricultural and Food Chemistry | 2009
Marie Yang; Chengbo Yang; Françoise Nau; Maryvonne Pasco; Lekh Raj Juneja; Tutomu Okubo; Yoshinori Mine
Egg has ben documented as a rich source for the supply of biologically active peptides. This study characterizes the immunomodulatory effects of an egg white enzymatic hydrolysate (EWH) using a BALB/c mouse model of egg allergy. Mice were orally sensitized to egg white and subsequently gavaged with EWH. ELISA results indicated significant reductions of both serum histamine and specific IgE titers in EWH-fed mice, accompanied by a repression of both IL-4 and IFN-gamma production in spleen cell cultures. Similarly, real-time RT-PCR analyses highlighted decreased mRNA expression of IFN-gamma and IL-12 (Th1-biased), as well as lower ratios of IL-4 and IL-13 mRNA (Th2-biased). On the other hand, increased intestinal expressions of TGF-beta and FOXp3 mRNA were determined in EWH-fed mice, suggesting induction of local regulatory mechanisms. The presence of immunodominant epitopes was proposed to be responsible for the immunomodulatory effects observed.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2011
Chengbo Yang; D. M. Albin; Zirong Wang; Barbara Stoll; Dale Lackeyram; K. C. Swanson; Yulong Yin; Kelly A. Tappenden; Yoshinori Mine; Rickey Y. Yada; Douglas G. Burrin; Ming Z. Fan
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus axis via unique control mechanisms. Kinetics of SGLT1 activity in apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from neonatal piglets by the distended intestinal sac method, were measured. High levels of maximal SGLT1 uptake activity were shown to exist along the jejunal crypt-villus axis in the piglets. Real-time RT-PCR analyses showed that SGLT1 mRNA abundance was lower (P < 0.05) by 30-35% in crypt cells than in villus cells. There were no significant differences in SGLT1 protein abundances on the jejunal apical membrane among upper villus, middle villus, and crypt cells, consistent with the immunohistochemical staining pattern. Higher abundances (P < 0.05) of total eukaryotic initiation factor 4E (eIF4E) protein and eIE4E-binding protein 1 γ-isoform in contrast to a lower (P < 0.05) abundance of phosphorylated (Pi) eukaryotic elongation factor 2 (eEF2) protein and the eEF2-Pi to total eEF2 abundance ratio suggest higher global protein translational efficiency in the crypt cells than in the upper villus cells. In conclusion, neonates have high intestinal apical SGLT1 uptake activity by abundantly expressing SGLT1 protein in the epithelia and on the apical membrane along the entire crypt-villus axis in association with enhanced protein translational control mechanisms in the crypt cells.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2015
Xia Xiong; Huansheng Yang; Bie Tan; Chengbo Yang; Miaomiao Wu; Gang Liu; Sung Woo Kim; Tiejun Li; Lili Li; Junjun Wang; Guoyao Wu; Yulong Yin
Weaning of piglets reflects intestinal dysfunction and atrophy and affected the physiological state of enterocytes. However, few studies have defined physiological state of enterocytes along the crypt-villus axis in early-weaning piglets. A total of 16 piglets from 8 litters were used in the experiment. One group of piglets was nursed by sows until age 21 days, and another group was weaned at age 14 days and then fed creep feed instead of breast milk for 7 days. Piglets were killed at 21 days, and the jejunum segments were dissected. After sequential isolation of jejunum epithelial cells along the crypt-villus axis, their proteins were analyzed through the isobaric tags for relative and absolute quantification, and proteins involved in the mammalian target of rapamycin signaling pathway and proliferating cell nuclear antigen abundances in jejunal epithelial cells of weaning or suckling group were determined by Western blotting. The differential proteins in three cell fractions were identified and analyzed. The results showed that proteins involved in the tricarboxylic acid cycle, β-oxidation, and the glycolysis pathway were significantly downregulated in the upper and middle villus of the early-weaned group. However, proteins involved in glycolysis were significantly upregulated in crypt cells. In addition, Western blot analysis showed that the expression of mammalian target of rapamycin pathway-related proteins was decreased (P < 0.05) in the early-weaned group. The present results showed that early-weaning differentially affect the expression of proteins involved in energy production of enterocytes along the jejunal crypt-villus axis.