Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengcheng Shi is active.

Publication


Featured researches published by Chengcheng Shi.


Nature Genetics | 2014

Genome sequence of the cultivated cotton Gossypium arboreum

Fuguang Li; Guangyi Fan; Kunbo Wang; Fengming Sun; Youlu Yuan; Guoli Song; Qin Li; Zhiying Ma; Cairui Lu; Changsong Zou; Wenbin Chen; Xinming Liang; Haihong Shang; Weiqing Liu; Chengcheng Shi; Guanghui Xiao; Caiyun Gou; Wuwei Ye; Xun Xu; Xueyan Zhang; Hengling Wei; Zhifang Li; Guiyin Zhang; Wang J; Kun Liu; Russell J. Kohel; Richard G. Percy; John Z. Yu; Yu-Xian Zhu; Jun Wang

The complex allotetraploid nature of the cotton genome (AADD; 2n = 52) makes genetic, genomic and functional analyses extremely challenging. Here we sequenced and assembled the Gossypium arboreum (AA; 2n = 26) genome, a putative contributor of the A subgenome. A total of 193.6 Gb of clean sequence covering the genome by 112.6-fold was obtained by paired-end sequencing. We further anchored and oriented 90.4% of the assembly on 13 pseudochromosomes and found that 68.5% of the genome is occupied by repetitive DNA sequences. We predicted 41,330 protein-coding genes in G. arboreum. Two whole-genome duplications were shared by G. arboreum and Gossypium raimondii before speciation. Insertions of long terminal repeats in the past 5 million years are responsible for the twofold difference in the sizes of these genomes. Comparative transcriptome studies showed the key role of the nucleotide binding site (NBS)-encoding gene family in resistance to Verticillium dahliae and the involvement of ethylene in the development of cotton fiber cells.


Nature Biotechnology | 2015

Genome sequence of cultivated Upland cotton ( Gossypium hirsutum TM-1) provides insights into genome evolution

Fuguang Li; Guangyi Fan; Cairui Lu; Guanghui Xiao; Changsong Zou; Russell J. Kohel; Zhiying Ma; Haihong Shang; Xiongfeng Ma; Jianyong Wu; Xinming Liang; Gai Huang; Richard G. Percy; Kun Liu; Weihua Yang; Wenbin Chen; Xiongming Du; Chengcheng Shi; Youlu Yuan; Wuwei Ye; Xin Liu; Xueyan Zhang; Weiqing Liu; Hengling Wei; Shoujun Wei; Guodong Huang; Xianlong Zhang; Shuijin Zhu; He Zhang; Fengming Sun

Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.


Nature Genetics | 2016

Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax)

Sangeet Lamichhaney; Guangyi Fan; Fredrik Widemo; Ulrika Gunnarsson; Doreen Schwochow Thalmann; Marc P Hoeppner; Susanne Kerje; Ulla Gustafson; Chengcheng Shi; He Zhang; Wenbin Chen; Xinming Liang; Leihuan Huang; Jiahao Wang; Enjing Liang; Qiong Wu; Simon Ming-Yuen Lee; Xun Xu; Jacob Höglund; Xin Liu; Leif Andersson

The ruff is a Palearctic wader with a spectacular lekking behavior where highly ornamented males compete for females. This bird has one of the most remarkable mating systems in the animal kingdom, comprising three different male morphs (independents, satellites and faeders) that differ in behavior, plumage color and body size. Remarkably, the satellite and faeder morphs are controlled by dominant alleles. Here we have used whole-genome sequencing and resolved the enigma of how such complex phenotypic differences can have a simple genetic basis. The Satellite and Faeder alleles are both associated with a 4.5-Mb inversion that occurred about 3.8 million years ago. We propose an evolutionary scenario where the Satellite chromosome arose by a rare recombination event about 500,000 years ago. The ruff mating system is the result of an evolutionary process in which multiple genetic changes contributing to phenotypic differences between morphs have accumulated within the inverted region.


Nature Communications | 2013

Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations

Xuming Zhou; Fengming Sun; Shixia Xu; Guangyi Fan; Kangli Zhu; Xin Liu; Yuan Chen; Chengcheng Shi; Yunxia Yang; Zhiyong Huang; Jing Chen; Haolong Hou; Xuejiang Guo; Wenbin Chen; Yuefeng Chen; Xiaohong Wang; Tian Lv; Dan Yang; Jiajian Zhou; Bangqing Huang; Zhengfei Wang; Wei Zhao; Ran Tian; Zhiqiang Xiong; Junxiao Xu; Xinming Liang; Bingyao Chen; Weiqing Liu; Wang J; Shengkai Pan

The baiji, or Yangtze River dolphin (Lipotes vexillifer), is a flagship species for the conservation of aquatic animals and ecosystems in the Yangtze River of China; however, this species has now been recognized as functionally extinct. Here we report a high-quality draft genome and three re-sequenced genomes of L. vexillifer using Illumina short-read sequencing technology. Comparative genomic analyses reveal that cetaceans have a slow molecular clock and molecular adaptations to their aquatic lifestyle. We also find a significantly lower number of heterozygous single nucleotide polymorphisms in the baiji compared to all other mammalian genomes reported thus far. A reconstruction of the demographic history of the baiji indicates that a bottleneck occurred near the end of the last deglaciation, a time coinciding with a rapid decrease in temperature and the rise of eustatic sea level.


The Plant Cell | 2013

The Tarenaya hassleriana Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers

Shifeng Cheng; Erik van den Bergh; Peng Zeng; Xiao Zhong; Jiajia Xu; Xin Liu; Johannes A. Hofberger; Suzanne de Bruijn; Amey S. Bhide; Canan Kuelahoglu; Chao Bian; Jing Chen; Guangyi Fan; Kerstin Kaufmann; Jocelyn C. Hall; Annette Becker; Andrea Bräutigam; Andreas P. M. Weber; Chengcheng Shi; Zhijun Zheng; Wujiao Li; M. Lv; Yimin Tao; Wang J; Hongfeng Zou; Zhiwu Quan; Julian M. Hibberd; Gengyun Zhang; Xin-Guang Zhu; Xun Xu

A comparative analysis of the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae, with Arabidopsis and Brassica crops shows that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits, including floral development and self-incompatibility systems. The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-α) that is independent of the Brassicaceae-specific duplication (At-α) and nested Brassica (Br-α) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.


Nature Communications | 2014

Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes

Xinxin You; Chao Bian; Qijie Zan; Xun Xu; Xin Liu; Jieming Chen; Jintu Wang; Ying Qiu; Wujiao Li; Xinhui Zhang; Ying Sun; Shixi Chen; Wanshu Hong; Yuxiang Li; Shifeng Cheng; Guangyi Fan; Chengcheng Shi; Jie Liang; Y. Tom Tang; Chengye Yang; Zhiqiang Ruan; Jie Bai; Chao Peng; Qian Mu; Jun Lu; Mingjun Fan; Shuang Yang; Zhiyong Huang; Xuanting Jiang; Xiaodong Fang

Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansion of innate immune system genes in the mudskippers that may provide defence against terrestrial pathogens. Several genes of the ammonia excretion pathway in the gills have experienced positive selection, suggesting their important roles in mudskippers’ tolerance to environmental ammonia. Some vision-related genes are differentially lost or mutated, illustrating genomic changes associated with aerial vision. Transcriptomic analyses of mudskippers exposed to air highlight regulatory pathways that are up- or down-regulated in response to hypoxia. The present study provides a valuable resource for understanding the molecular mechanisms underlying water-to-land transition of vertebrates.


GigaScience | 2016

Draft genome of the living fossil Ginkgo biloba

Rui Guan; Yunpeng Zhao; He Zhang; Guangyi Fan; Xin Liu; Wenbin Zhou; Chengcheng Shi; Jiahao Wang; Weiqing Liu; Xinming Liang; Yuanyuan Fu; Kailong Ma; Lijun Zhao; Fu-Min Zhang; Zuhong Lu; Simon Ming-Yuen Lee; Xun Xu; Jian Wang; Huanming Yang; Chengxin Fu; Song Ge; Wenbin Chen

BackgroundGinkgo biloba L. (Ginkgoaceae) is one of the most distinctive plants. It possesses a suite of fascinating characteristics including a large genome, outstanding resistance/tolerance to abiotic and biotic stresses, and dioecious reproduction, making it an ideal model species for biological studies. However, the lack of a high-quality genome sequence has been an impediment to our understanding of its biology and evolution.FindingsThe 10.61 Gb genome sequence containing 41,840 annotated genes was assembled in the present study. Repetitive sequences account for 76.58% of the assembled sequence, and long terminal repeat retrotransposons (LTR-RTs) are particularly prevalent. The diversity and abundance of LTR-RTs is due to their gradual accumulation and a remarkable amplification between 16 and 24 million years ago, and they contribute to the long introns and large genome. Whole genome duplication (WGD) may have occurred twice, with an ancient WGD consistent with that shown to occur in other seed plants, and a more recent event specific to ginkgo. Abundant gene clusters from tandem duplication were also evident, and enrichment of expanded gene families indicates a remarkable array of chemical and antibacterial defense pathways.ConclusionsThe ginkgo genome consists mainly of LTR-RTs resulting from ancient gradual accumulation and two WGD events. The multiple defense mechanisms underlying the characteristic resilience of ginkgo are fostered by a remarkable enrichment in ancient duplicated and ginkgo-specific gene clusters. The present study sheds light on sequencing large genomes, and opens an avenue for further genetic and evolutionary research.


Plant Journal | 2013

The sacred lotus genome provides insights into the evolution of flowering plants

Yun Wang; Guangyi Fan; Yiman Liu; Fengming Sun; Chengcheng Shi; Xin Liu; Jing Peng; Wenbin Chen; Xinfang Huang; Shifeng Cheng; Yuping Liu; Xinming Liang; Honglian Zhu; Chao Bian; Lan Zhong; Tian Lv; Hongxia Dong; Weiqing Liu; Xiao Zhong; Jing Chen; Zhiwu Quan; Zhihong Wang; Benzhong Tan; Chufa Lin; Feng Mu; Xun Xu; Yi Ding; An-Yuan Guo; Jun Wang; Weidong Ke

Sacred lotus (Nelumbo nucifera) is an ornamental plant that is also used for food and medicine. This basal eudicot species is especially important from an evolutionary perspective, as it occupies a critical phylogenetic position in flowering plants. Here we report the draft genome of a wild strain of sacred lotus. The assembled genome is 792 Mb, which is approximately 85-90% of genome size estimates. We annotated 392 Mb of repeat sequences and 36,385 protein-coding genes within the genome. Using these sequence data, we constructed a phylogenetic tree and confirmed the basal location of sacred lotus within eudicots. Importantly, we found evidence for a relatively recent whole-genome duplication event; any indication of the ancient paleo-hexaploid event was, however, absent. Genomic analysis revealed evidence of positive selection within 28 embryo-defective genes and one annexin gene that may be related to the long-term viability of sacred lotus seed. We also identified a significant expansion of starch synthase genes, which probably elevated starch levels within the rhizome of sacred lotus. Sequencing this strain of sacred lotus thus provided important insights into the evolution of flowering plant and revealed genetic mechanisms that influence seed dormancy and starch synthesis.


eLife | 2016

The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing

Alvaro Martinez Barrio; Sangeet Lamichhaney; Guangyi Fan; Nima Rafati; Mats Pettersson; He Zhang; Jacques Dainat; Diana Ekman; Marc P. Höppner; Patric Jern; Marcel Martin; Björn Nystedt; Xin Liu; Wenbin Chen; Xinming Liang; Chengcheng Shi; Yuanyuan Fu; Kailong Ma; Xiao Zhan; Chungang Feng; Ulla Gustafson; Carl-Johan Rubin; Markus Sällman Almén; Martina Blass; Michele Casini; Arild Folkvord; Linda Laikre; Nils Ryman; Simon Ming-Yuen Lee Lee; Xun Xu

Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation. DOI: http://dx.doi.org/10.7554/eLife.12081.001


Nature Biotechnology | 2017

Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments

Rajeev K. Varshney; Chengcheng Shi; Mahendar Thudi; Cedric Mariac; Jason G. Wallace; Peng Qi; He Zhang; Yusheng Zhao; Xiyin Wang; Abhishek Rathore; Rakesh K. Srivastava; Annapurna Chitikineni; Guangyi Fan; Prasad Bajaj; Somashekhar Punnuri; S K Gupta; Hao Wang; Yong Jiang; Marie Couderc; Mohan A. V. S. K. Katta; Dev Paudel; K. D. Mungra; Wenbin Chen; Karen R. Harris-Shultz; Vanika Garg; Neetin Desai; Dadakhalandar Doddamani; Ndjido Ardo Kane; Joann A. Conner; Arindam Ghatak

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.

Collaboration


Dive into the Chengcheng Shi's collaboration.

Top Co-Authors

Avatar

Wenbin Chen

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Xin Liu

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Xun Xu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

He Zhang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiqing Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fengming Sun

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Bian

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Kailong Ma

University of Waterloo

View shared research outputs
Researchain Logo
Decentralizing Knowledge