Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengcheng Tian is active.

Publication


Featured researches published by Chengcheng Tian.


Journal of the American Chemical Society | 2012

A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation

Xiang Zhu; Chengcheng Tian; Shannon M. Mahurin; Song-Hai Chai; Congmin Wang; Suree Brown; Gabriel M. Veith; Huimin Luo; Honglai Liu; Sheng Dai

A general strategy for the synthesis of porous, fluorescent, triazine-framework-based membranes with intrinsic porosity through an aromatic nitrile trimerization reaction is presented. The essence of this strategy lies in the use of a superacid to catalyze the cross-linking reaction efficiently at a low temperature, allowing porous polymer membrane architectures to be facilely derived. With functionalized triazine units, the membrane exhibits an increased selectivity for membrane separation of CO(2) over N(2). The good ideal CO(2)/N(2) selectivity of 29 ± 2 was achieved with a CO(2) permeability of 518 ± 25 barrer. Through this general synthesis protocol, a new class of porous polymer membranes with tunable functionalities and porosities can be derived, significantly expanding the currently limited library of polymers with intrinsic microporosity for synthesizing functional membranes in separation, catalysis, and energy storage/conversion.


Chemical Communications | 2014

Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups

Xiang Zhu; Shannon M. Mahurin; Shuhao An; Chi-Linh Do-Thanh; Chengcheng Tian; Yankai Li; Lance W. Gill; Edward W. Hagaman; Zijun Bian; Jianhai Zhou; Jun Hu; Honglai Liu; Sheng Dai

A porous triazine and carbazole bifunctionalized task-specific polymer has been synthesized via a facile Friedel-Crafts reaction. The resultant porous framework exhibits excellent CO2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO2 over N2.


Journal of the American Chemical Society | 2013

Template-Free Synthesis of Hierarchical Porous Metal-Organic Frameworks

Yanfeng Yue; Zhen-An Qiao; Pasquale F. Fulvio; Andrew J. Binder; Chengcheng Tian; Jihua Chen; Kimberly M. Nelson; Xiang Zhu; Sheng Dai

A template-free synthesis of a hierarchical microporous-mesoporous metal-organic framework (MOF) of zinc(II) 2,5-dihydroxy-1,4-benzenedicarboxylate (Zn-MOF-74) is reported. The surface morphology and porosity of the bimodal materials can be modified by etching the pore walls with various synthesis solvents for different reaction times. This template-free strategy enables the preparation of stable frameworks with mesopores exceeding 15 nm, which was previously unattained in the synthesis of MOFs by the ligand-extension method.


Chemsuschem | 2012

Efficient CO2 Capture by Porous, Nitrogen‐Doped Carbonaceous Adsorbents Derived from Task‐Specific Ionic Liquids

Xiang Zhu; Patrick C. Hillesheim; Shannon M. Mahurin; Chongmin Wang; Chengcheng Tian; Suree Brown; Huimin Luo; Gabriel M. Veith; Kee Sung Han; Edward W. Hagaman; Honglai Liu; Sheng Dai

The search for a better carbon dioxide (CO(2) ) capture material is attracting significant attention because of an increase in anthropogenic emissions. Porous materials are considered to be among the most promising candidates. A series of porous, nitrogen-doped carbons for CO(2) capture have been developed by using high-yield carbonization reactions from task-specific ionic liquid (TSIL) precursors. Owing to strong interactions between the CO(2) molecules and nitrogen-containing basic sites within the carbon framework, the porous nitrogen-doped compound derived from the carbonization of a TSIL at 500 °C, CN500, exhibits an exceptional CO(2) absorption capacity of 193 mg of CO(2) per g sorbent (4.39 mmol g(-1) at 0 °C and 1 bar), which demonstrates a significantly higher capacity than previously reported adsorbents. The application of TSILs as precursors for porous materials provides a new avenue for the development of improved materials for carbon capture.


Journal of the American Chemical Society | 2016

In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance

Xiang Zhu; Chengcheng Tian; Gabriel M. Veith; Carter W. Abney; Jérémy Dehaudt; Sheng Dai

An in situ doping strategy has been developed for the generation of a novel family of hexaazatriphenylene-based conjugated triazine frameworks (CTFs) for efficient CO2 capture. The resulting task-specific materials exhibit an exceptionally high CO2 uptake capacity (up to 4.8 mmol g(-1) at 297 K and 1 bar). The synergistic effects of ultrananoporosity and rich N/O codoped CO2-philic sites bestow the framework with the highest CO2 adsorption capacity among known porous organic polymers (POPs). This innovative approach not only enables superior CO2 separation performance but also provides tunable control of surface features on POPs, thereby affording control over bulk material properties. We anticipate this novel strategy will facilitate new possibilities for the rational design and synthesis of nanoporous materials for carbon capture.


Macromolecular Rapid Communications | 2013

Synthesis of Porous, Nitrogen‐Doped Adsorption/Diffusion Carbonaceous Membranes for Efficient CO2 Separation

Xiang Zhu; Song-Hai Chai; Chengcheng Tian; Pasquale F. Fulvio; Kee Sung Han; Edward W. Hagaman; Gabriel M. Veith; Shannon M. Mahurin; Suree Brown; Honglai Liu; Sheng Dai

A porous, nitrogen-doped carbonaceous free-standing membrane (TFMT-550) is prepared by a facile template-free method using letrozole as an intermediate to a triazole-functionalized-triazine framework, followed by carbonization. Such adsorption/diffusion membranes exhibit good separation performance of CO2 over N2 and surpassing the most recent Robeson upper bound. An exceptional ideal CO2 /N2 permselectivity of 47.5 was achieved with a good CO2 permeability of 2.40 × 10(-13) mol m m(-2) s(-1) Pa(-1) . The latter results arise from the presence of micropores, narrow distribution of small mesopores and from the strong dipole-quadrupole interactions between the large quadrupole moment of CO2 molecules and the polar sites associated with N groups (e.g., triazine units) within the framework.


Chemical Communications | 2013

An efficient and reusable “hairy” particle acid catalyst for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water

Chengcheng Tian; Chunhui Bao; Andrew J. Binder; Zhenqian Zhu; Bin Hu; Yanglong Guo; Bin Zhao; Sheng Dai

Poly(4-styrenesulfonic acid) brush-grafted silica particles, synthesized by surface-initiated atom transfer radical polymerization, were employed as a reusable acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water. The particles exhibited a high activity with the HMF yield of up to 31%, in contrast to 26% from the corresponding free homopolymer catalyst.


Advanced Materials | 2017

In Situ Coupling Strategy for the Preparation of FeCo Alloys and Co4N Hybrid for Highly Efficient Oxygen Evolution

Xiang Zhu; Tian Jin; Chengcheng Tian; Chenbao Lu; Xiaoming Liu; Min Zeng; Xiaodong Zhuang; Shize Yang; Lin He; Honglai Liu; Sheng Dai

An in situ coupling approach is developed to create a new highly efficient and durable cobalt-based electrocatalyst for the oxygen evolution reaction (OER). Using a novel cyclotetramerization, a task-specific bimetallic phthalocyanine-based nanoporous organic framework is successfully built as a precursor for the carbonization synthesis of a nonprecious OER electrocatalyst. The resultant material exhibits an excellent OER activity with a low overpotential of 280 mV at a current density of 10 mA cm-2 and high durability in an alkaline medium. This impressive result ranks among the best from known Co-based OER catalysts under the same conditions. The simultaneous installation of multiple diverse cobalt-based active sites, including FeCo alloys and Co4 N nanoparticles, plays a critical role in achieving this promising OER performance. This innovative approach not only enables high-performance OER activity to be achieved but simultaneously provides a means to control the surface features, thereby tuning the catalytic property of the material.


Chemsuschem | 2014

Three-Phase Catalytic System of H2O, Ionic Liquid, and VOPO4–SiO2 Solid Acid for Conversion of Fructose to 5-Hydroxymethylfurfural

Chengcheng Tian; Xiang Zhu; Song-Hai Chai; Zili Wu; Andrew J. Binder; Suree Brown; Lin Li; Huimin Luo; Yanglong Guo; Sheng Dai

Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid.


Journal of Materials Chemistry | 2017

Pyrolysis of conjugated nanoporous polycarbazoles to mesoporous N-doped carbon nanotubes as efficient electrocatalysts for the oxygen reduction reaction

Xiang Zhu; Yihua Zhu; Chengcheng Tian; Tian Jin; Xue-Jing Yang; Xianbo Jin; Chunzhong Li; Hualin Wang; Honglai Liu; Sheng Dai

Developing new techniques for the synthesis of N-doped carbon nanotubes (N-CNTs) with high porosities and abundant N-doped active sites is significant for energy conversion and utilization. We report herein a novel non-CVD methodology that exploits a conjugated-nanoporous-polymer-driven, self-templated route toward a new family of highly N-doped carbon nanotubes. The utilization of a task-specific tubular nanoporous polycarbazole as a template maintains both high porosity and density of N-doped active sites, while simultaneously affording a hollow nanotube-like morphology of the final N-doped carbons. Attributed to these unique functionalities, the resultant N-CNT-based electrocatalyst exhibits a superior oxygen reduction reaction (ORR) activity with a half-wave potential of 0.88 V (vs. the reversible hydrogen electrode), higher long-term stability, and better methanol tolerance than commercial 20% Pt/C in alkaline media. More importantly, the ORR performance in an acidic medium exceeds that of the most previously reported non-precious carbonaceous catalysts. These findings could provide an alternative approach towards highly efficient non-precious N-CNT-based electrocatalysts for the ORR.

Collaboration


Dive into the Chengcheng Tian's collaboration.

Top Co-Authors

Avatar

Sheng Dai

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiang Zhu

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Gabriel M. Veith

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Shannon M. Mahurin

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Honglai Liu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carter W. Abney

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Song-Hai Chai

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Suree Brown

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Edward W. Hagaman

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge