Chengfeng Yang
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengfeng Yang.
Molecular Cell | 2010
Maria Soledad Sosa; Cynthia Lopez-Haber; Chengfeng Yang; Hong Bin Wang; Mark A. Lemmon; John M. Busillo; Jiansong Luo; Jeffrey L. Benovic; Andres J. Klein-Szanto; Hiroshi Yagi; J. Silvio Gutkind; Ramon Parsons; Marcelo G. Kazanietz
While the small GTPase Rac1 and its effectors are well-established mediators of mitogenic and motile signaling by tyrosine kinase receptors and have been implicated in breast tumorigenesis, little is known regarding the exchange factors (Rac-GEFs) that mediate ErbB receptor responses. Here, we identify the PIP(3)-Gβγ-dependent Rac-GEF P-Rex1 as an essential mediator of Rac1 activation, motility, cell growth, and tumorigenesis driven by ErbB receptors in breast cancer cells. Notably, activation of P-Rex1 in breast cancer cells requires the convergence of inputs from ErbB receptors and a Gβγ- and PI3Kγ-dependent pathway. Moreover, we identified the GPCR CXCR4 as a crucial mediator of P-Rex1/Rac1 activation in response to ErbB ligands. P-Rex1 is highly overexpressed in human breast cancers and their derived cell lines, particularly those with high ErbB2 and ER expression. In addition to the prognostic and therapeutic implications, our findings reveal an ErbB effector pathway that is crucial for breast cancer progression.
Toxicological Sciences | 2011
Zhishan Wang; Yong Zhao; Eric Smith; Gregory J. Goodall; Paul A. Drew; Thomas Brabletz; Chengfeng Yang
Arsenic is a well-recognized human carcinogen, yet the mechanism by which it causes human cancer has not been elucidated. MicroRNAs (miRNAs) are a big family of small noncoding RNAs and negatively regulate the expression of a large number of protein-coding genes. We investigated the role of miRNAs in arsenic-induced human bronchial epithelial cell malignant transformation and tumor formation. We found that prolonged exposure of immortalized p53-knocked down human bronchial epithelial cells (p53(low)HBECs) to low levels of arsenite (NaAsO₂, 2.5 μM) caused malignant transformation that was accompanied by epithelial to mesenchymal transition (EMT) and reduction in the levels of miR-200 family members. Stably reexpressing miR-200b in arsenite-transformed cells (As-p53(low)HBECs) completely reversed their transformed phenotypes, as evidenced by inhibition of colony formation in soft agar and prevention of xenograft tumor formation in nude mice. Moreover, stably expressing miR-200b alone in parental nontransformed p53(low)HBECs was sufficient to completely prevent arsenite exposure from inducing EMT and malignant transformation. Further mechanistic studies showed that depletion of miR-200 in arsenite-transformed cells involved induction of the EMT-inducing transcription factors zinc-finger E-box-binding homeobox factor 1 (ZEB1) and ZEB2 and increased methylation of miR-200 promoters. Stably expressing ZEB1 alone in parental nontransformed p53(low)HBECs was sufficient to deplete miR-200, induce EMT and cause cell transformation, phenocopying the oncogenic effect of 16-week arsenite exposure. These findings establish for the first time a causal role for depletion of miR-200b expression in human cell malignant transformation and tumor formation resulting from arsenic exposure.
Toxicological Sciences | 2010
Yong Zhao; Ying S. Tan; Sandra Z. Haslam; Chengfeng Yang
Perfluorooctanoic acid (PFOA) is a synthetic, widely used perfluorinated carboxylic acid and a persistent environmental pollutant. It is an agonist of peroxisome proliferator-activated receptor alpha (PPARalpha). Studies have shown that PFOA causes hepatocellular hypertrophy, tumorigenesis, and developmental toxicity in rodents, and some of its toxicity depends on the expression of PPARalpha. Our recent study revealed a stimulatory effect of peripubertal PFOA treatment (5 mg/kg) on mammary gland development in C57Bl/6 mice. The present study was designed to examine the underlying mechanism(s). It was found that mammary gland stimulation by PFOA was similarly observed in PPARalpha knockout and wild-type C57Bl/6 mice. The presence of ovaries was required for PFOA treatment (5 mg/kg) to stimulate mammary gland development with significant increases in the levels of enzymes involved in steroid hormone synthesis in both PFOA-treated wild-type and PPARalpha knockout mouse ovaries. PFOA treatment significantly increased serum progesterone (P) levels in ovary-intact mice and also enhanced mouse mammary gland responses to exogenous estradiol (E), P, and E + P. In addition, PFOA treatment resulted in elevated mammary gland levels of epidermal growth factor receptor (EGFR), estrogen receptor alpha, amphiregulin (Areg, a ligand of EGFR), hepatocyte growth factor, cyclin D1, and proliferating cell nuclear antigen (PCNA) in both wild-type and PPARalpha knockout mouse mammary glands. These results indicate that PFOA stimulates mammary gland development in C57Bl/6 mice by promoting steroid hormone production in ovaries and increasing the levels of a number of growth factors in mammary glands, which is independent of the expression of PPARalpha.
Carcinogenesis | 2012
Zhiyuan Han; Qiaoyuan Yang; Binbin Liu; Jianjun Wu; Yuanqi Li; Chengfeng Yang; Yiguo Jiang
Aberrant expression of microRNA (miRNA) has been previously demonstrated to play an important role in a wide range of cancer types and further elucidation of its role in the mechanisms underlying tumorigenesis, anticarcinogenesis and potential chemotherapeutics is warranted. We chose the anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-transformed human bronchial epithelial cell line 16HBE-T to study miRNAs involved in anticarcinogenesis. In resveratrol-treated cells, we found that miR-622 was upregulated, whereas it was downregulated in 16HBE-T cells, suggesting that miR-622 potentially acts as a tumor suppressor. Increasing the level of miR-622 by transient transfection-induced inhibition of proliferation and G(0) arrest in 16HBE-T cells and the lung cancer cell line H460 as demonstrated by cell viability and cell cycle analysis. MiR-622 dramatically suppressed the ability of 16HBE-T cells to form colonies in vitro and to develop tumors in nude mice. According to bioinformatics analysis, K-Ras messenger RNA was predicted as a putative miR-622 target; this was confirmed by western blot and luciferase reporter assays. Cell growth retardation was inhibited upon knockdown of K-Ras and an increase in the level of miR-622 in 16HBE-T cells. Furthermore, miR-622 inhibitor partially impaired the growth of 16HBE-T cells as demonstrated by luciferase reporter activity and K-Ras protein expression in 16HBE-T cells. In summary, miR-622 functions as a tumor suppressor by targeting K-Ras and impacting the anticancer effect of resveratrol. Therefore, miR-622 is potentially useful as a clinical therapy. MiR-622 impacts the K-Ras signal pathway and the potentially anticarcinogenic or chemotherapeutic properties warrant further investigation.
Oncogene | 2014
Qiaoyuan Yang; Z Jie; Sheng Ye; Z Li; Zhiyuan Han; Jianjun Wu; Chengfeng Yang; Yiguo Jiang
MicroRNAs (miRNAs) are noncoding RNAs that function as post-transcriptional regulators of tumor oncogenes and suppressors. Single-nucleotide polymorphisms (SNPs) in miRNA genes are a novel class of genetic variations in the human genome that are currently being identified and investigated in human cancers. In this study, we aimed to investigate whether SNPs in the miR-27a gene affect miR-27a expression and alter susceptibility to gastric cancer. Therefore, we conducted a case–control population study and the allele and genotype frequencies for polymorphism rs11671784 in miR-27a gene were examined in the study population. As a result, we found that the G/A polymorphism in the miR-27a gene exhibited a significant effect on gastric cancer risk. Compared with GG homozygotes, subjects who were GA heterozygotes or AA homozygotes exhibited a decreased risk of gastric cancer. The G/A polymorphism impaired the processing of pre-miR-27a to mature miR-27a, resulting in significantly reduced expression of mature miR-27a and an increased level of its target HOXA10. Furthermore, we confirmed these findings in in vitro studies by overexpressing pre-miR-27a carrying G or A allele. It provided further evidence demonstrating that allelic difference of rs11671784 is linked to gastric tumorigenesis. In summary, our results indicate that the G/A polymorphism in miR-27a gene (rs11671784) decreases miR-27a expression, reduces gastric cancer risk and plays a role in gastric tumorigenesis. This is the first study to address the role and function of miR-27a polymorphism rs11671784 in gastric cancer. These results could be useful to assess individual susceptibility of gastric cancer and will improve our understanding of the potential contribution of miRNA SNPs to cancer pathogenesis.
Reproductive Toxicology | 2009
Chengfeng Yang; Ying S. Tan; Jack R. Harkema; Sandra Z. Haslam
Perfluorooctanoic acid (PFOA), a common and persistent industrial byproduct detected in human sera, has raised health concerns. PFOA is detrimental to lactational function and postnatal mammary gland development in CD-1 mice after gestational exposure. We have examined the peripubertal period (21 through 50 days of age) as an important window of mammary gland susceptibility to environmental exposures that may affect breast cancer risk later in life. The effects of PFOA (0.1-10mg/kg BW) were examined in Balb/c and C57BL/6 mice. PFOA treatment caused hepatocellular hypertrophy and delayed vaginal opening in both mouse strains. While Balb/c mice exhibited only inhibition of mammary gland and uterine development (5, 10mg/kg), C57BL/6 mice exhibited stimulatory effects in both organs at low dose (5mg/kg) and inhibition at higher dose (10mg/kg). This underscores the need for caution when drawing conclusions about the effects of PFOA and possibly other environmental pollutants on the basis of studies in a single mouse strain.
Carcinogenesis | 2014
Brock Humphries; Zhishan Wang; Aaron L. Oom; Theresa Fisher; Dongfeng Tan; Yuehua Cui; Yiguo Jiang; Chengfeng Yang
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor prognosis and lacks effective targeted therapies. The microRNA-200 (miR-200) family is found to inhibit or promote breast cancer metastasis; however, the underlying mechanism is not well understood. This study was performed to investigate the effect and mechanism of miR-200b on TNBC metastasis and identify targets for developing more efficient treatment for TNBC. We found that miR-200 family expression levels are significantly lower in highly migratory TNBC cells and metastatic TNBC tumors than other types of breast cancer cells and tumors. Ectopically expressing a single member (miR-200b) of the miR-200 family drastically reduces TNBC cell migration and inhibits tumor metastasis in an orthotopic mouse mammary xenograft tumor model. We identified protein kinase Cα (PKCα) as a new direct target of miR-200b and found that PKCα protein levels are inversely correlated with miR-200b levels in 12 kinds of breast cancer cells. Inhibiting PKCα activity or knocking down PKCα levels significantly reduces TNBC cell migration. In contrast, forced expression of PKCα impairs the inhibitory effect of miR-200b on cell migration and tumor metastasis. Further mechanistic studies revealed that PKCα downregulation by miR-200b results in a significant decrease of Rac1 activation in TNBC cells. These results show that loss of miR-200b expression plays a crucial role in TNBC aggressiveness and that miR-200b suppresses TNBC cell migration and tumor metastasis by targeting PKCα. Our findings suggest that miR-200b and PKCα may serve as promising therapeutic targets for metastatic TNBC.
Pancreas | 2010
Laura V. Mauro; Valeria C. Grossoni; Alejandro J. Urtreger; Chengfeng Yang; Lucas L. Colombo; Ana Morandi; María Guadalupe Pallotta; Marcelo G. Kazanietz; Elisa Bal de Kier Joffé; Lydia L. Puricelli
Objective: Our objective was to study the role of protein kinase C delta (PKC&dgr;) in the progression of human pancreatic carcinoma. Methods: Protein kinase C delta expression in human ductal carcinoma (n = 22) was studied by immunohistochemistry. We analyzed the effect of PKC&dgr; overexpression on in vivo and in vitro properties of human ductal carcinoma cell line PANC1. Results: Human ductal carcinomas showed PKC&dgr; overexpression compared with normal counterparts. In addition, in vitro PKC&dgr;-PANC1 cells showed increased anchorage-independent growth and higher resistance to serum starvation and to treatment with cytotoxic drugs. Using pharmacological inhibitors, we determined that phosphatidylinositol-3-kinase and extracellular receptor kinase pathways were involved in the proliferation of PKC&dgr;-PANC1. Interestingly, PKC&dgr;-PANC1 cells showed a less in vitro invasive ability and an impairment in their ability to migrate and to secrete the proteolytic enzyme matrix metalloproteinase-2. In vivo experiments indicated that PKC&dgr;-PANC1 cells were more tumorigenic, as they developed tumors with a significantly lower latency and a higher growth rate with respect to the tumors generated with control cells. Besides, only PKC&dgr;-PANC1 cells developed lung metastasis. Conclusion: Our results showed that the overexpression of PKC&dgr; in PANC1 cells induced a more malignant phenotype in vivo, probably through the modulation of cell proliferation and survival, involving phosphatidylinositol-3-kinase and extracellular receptor kinase signaling pathways.
BioMed Research International | 2014
Aaron L. Oom; Brock Humphries; Chengfeng Yang
First discovered in 1993, microRNAs (miRNAs) have been one of the hottest research areas over the past two decades. Oftentimes, miRNAs levels are found to be dysregulated in cancer patients. The potential use of miRNAs in cancer therapies is an emerging and promising field, with research finding miRNAs to play a role in cancer initiation, tumor growth, and metastasis. Therefore, miRNAs could become an integral part from cancer diagnosis to treatment in future. This review aims to examine current novel research work on the potential roles of miRNAs in cancer therapies, while also discussing several current challenges and needed future research.
Toxicology and Applied Pharmacology | 2013
Jianjun Wu; Ti Yang; Xun Li; Qiaoyuan Yang; Rong Liu; Jinkun Huang; Yuanqi Li; Chengfeng Yang; Yiguo Jiang
The alteration of microRNA (miRNA) expression plays an important role in chemical carcinogenesis. Presently, few reports have been published that concern the significance of circulating miRNAs in lung carcinogenesis induced by environmental carcinogens. The purpose of this study was to identify serum miRNAs that could be associated with lung carcinogenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Male F344 rats were systemically administered with NNK. The rat serum differential expression profiles of miRNAs were analyzed by small RNA solexa sequencing. Using quantitative real-time PCR, the differentially expressed serum miRNAs were identified in each individual rat. Serum miR-206 and miR-133b were selected for further identification in rat serum at different stages of lung carcinogenesis; we detected the levels of serum miR-206 and miR-133b in lung cancer tissues induced by NNK. NNK causes significant alteration of serum miRNA expression. Compared to the control group, serum miR-206 and miR-133b were significantly up-regulated in the early stage of NNK-induced lung carcinogenesis. miR-206 and miR-133b exhibited low-expression in lung cancer tissues. Our results demonstrate that lung carcinogen NNK exposure changes the expression of serum miRNAs. Serum miR-206 and miR-133b could be associated with lung carcinogenesis induced by NNK.