Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chenggang Huang is active.

Publication


Featured researches published by Chenggang Huang.


Drug Metabolism and Disposition | 2012

Metabolism and Pharmacokinetics of Mangiferin in Conventional Rats, Pseudo-Germ-Free Rats, and Streptozotocin-Induced Diabetic Rats

Huihui Liu; Bin Wu; Guoyu Pan; Lei He; Zhixiong Li; Mingsong Fan; Longhai Jian; Mingcang Chen; Ke Wang; Chenggang Huang

To clarify the role of the intestinal flora in the absorption and metabolism of mangiferin and to elucidate its metabolic fate and pharmacokinetic profile in diabetic rats, a systematic and comparative investigation of the metabolism and pharmacokinetics of mangiferin in conventional rats, pseudo-germ-free rats, and streptozotocin (STZ)-induced diabetic rats was conducted. Forty-eight metabolites of mangiferin were detected and identified in the urine, plasma, and feces after oral administration (400 mg/kg). Mangiferin underwent extensive metabolism in conventional rats and diabetic rats, but the diabetic rats exhibited a greater number of metabolites compared with that of conventional rats. When the intestinal flora were inhibited, deglycosylation of mangiferin and sequential biotransformations would not occur. Pharmacokinetic studies indicated a 2.79- and 2.35-fold increase in the plasma maximum concentration and the area under the concentration-time curve from 0 to 24 h of mangiferin in diabetic rats compared with those for conventional rats, whereas no significant differences were observed between conventional rats and pseudo-germ-free rats. Further real-time quantitative reverse transcription-polymerase chain reaction results indicated that the multidrug resistance (mdr) 1a level in the ileum increased, whereas its level in the duodenum and the mdr1b mRNA levels in the duodenum, jejunum, and ileum decreased in diabetic rats compared with those in conventional rats. With regard to the pseudo-germ-free rats, up-regulated mdr1a mRNA levels and down-regulated mdr1b mRNA levels in the small intestines were observed. The diabetic status induced increased UDP-glucuronosyltransferase (UGT) 1A3, UGT1A8, UGT2B8, and sulfotransferase (SULT) 1A1 mRNA levels and decreased catechol-O-methyltransferase (COMT), UGT2B6, UGT2B12, and SULT1C1 mRNA levels. These results might partially explain the different pharmacokinetic and metabolic disposition of mangiferin among conventional and model rats.


Journal of Pharmaceutical and Biomedical Analysis | 2013

Analysis and detection of the chemical constituents of Radix Polygalae and their metabolites in rats after oral administration by ultra high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry

Yun Ling; Zhixiong Li; Mingcang Chen; Zhaolin Sun; Mingsong Fan; Chenggang Huang

Radix Polygalae (RP), the dried root of Polygala tenuifolia Willd., is a well-known traditional Chinese medicine to mediate sedative, antipsychotic, cognitive improving, neuroprotective, and anti-inflammatory therapeutic effects on the central nervous system. In this work, ultra high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/ESI-Q-TOF-MS/MS) was established for the separation and characterization of the chemical constituents in Radix Polygalae and their metabolites in rat plasma and urine after oral administration. Samples were separated on an Agilent Zorbax Eclipse Plus-C18 column (100mm×2.1mm, 1.8μm) with 0.1% formic acid aqueous solution and acetonitrile as the mobile phase under gradient conditions. Overall, 50 compounds were characterized from the RP, 9 of which are to our knowledge reported for the first time. In vivo, 10 components and 2 metabolites were observed in rat plasma, and 27 components and 7 metabolites were detected in rat urine. The results from this work improve our understanding on the chemical constituents of RP and their metabolic profiling.


Journal of Pharmaceutical and Biomedical Analysis | 2011

Structure elucidation of in vivo and in vitro metabolites of mangiferin

Huihui Liu; Ke Wang; Yihong Tang; Zhaolin Sun; Longhai Jian; Zhixiong Li; Bin Wu; Chenggang Huang

The in vivo and in vitro metabolism of mangiferin was systematically investigated. Urine, plasma, feces, contents of intestinal tract and various organs were collected after oral administration of mangiferin to healthy rats at a dose of 200mg/kg body weight. For comparison, mangiferin was also incubated in vitro with intestinal flora of rats. With the aid of a specific and sensitive liquid chromatography coupled with electrospray ionization tandem hybrid ion trap mass spectrometry (LC-ESI-IT-MS(n)), a total of thirty-three metabolites of mangiferin were detected and their structures were tentatively elucidated on the basis of the characteristics of their precursor ions, product ions and chromatographic retention times. The biotransformation pathways of mangiferin involved deglycosylation, dehydroxylation, methylation, glycosylation, glucuronidation and sulfation.


Biomedical Chromatography | 2008

Identification of major xanthones and steroidal saponins in rat urine by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry technology following oral administration of Rhizoma Anemarrhenae decoction

Chunhui Ma; L. Wang; Yihong Tang; Mingsong Fan; Hongbin Xiao; Chenggang Huang

Rhizoma Anemarrhenae (Zhimu in Chinese), the dried rhizome of Anemarrhena asphodeloides Bge. (Fam. Liliaceae), is a well-known traditional Chinese medicinal herb and has been used clinically in China for centuries to cure various diseases. However, like other traditional Chinese medicines, the effective constituents of this medicine, especially the assimilation and metabolites in vivo, which are very important to show their effects, have not been systematically studied. In this paper, solid-phase extraction and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry technologies were used to study the constituents absorbed into rat urine and their metabolites after oral administration of Rhizoma Anemarrhenae decoction. A total of 11 compounds, including two xanthones, three of their metabolites and six steroidal saponins, were identified in rat urine sample. They were neomangiferin (1), glucuronide and monomethyl conjugate of mangiferin (2), mangiferin (3), monomethyl conjugate of mangiferin (4), dimethyl conjugate of mangiferin (5), timosaponin N or timosaponin E1 (6), timosaponin BII (7), timosaponin BIII (8), anemarrhenasaponin I or anemarrhenasaponin II (9), timosaponin AII (10) and timosaponin AIII (11). The results would efficaciously narrow the potentially active compounds range in Rhizoma Anemarrhenae decoction, and pave a helpful way for follow-up mechanism of action research.


Molecules | 2011

Mangiferin, an Anti-HIV-1 Agent Targeting Protease and Effective against Resistant Strains

Rui-Rui Wang; Yue-Dong Gao; Chunhui Ma; Xing-Jie Zhang; Chenggang Huang; Jing-Fei Huang; Yong-Tang Zheng

The anti-HIV-1 activity of mangiferin was evaluated. Mangiferin can inhibit HIV-1ⅢB induced syncytium formation at non-cytotoxic concentrations, with a 50% effective concentration (EC50) at 16.90 μM and a therapeutic index (TI) above 140. Mangiferin also showed good activities in other laboratory-derived strains, clinically isolated strains and resistant HIV-1 strains. Mechanism studies revealed that mangiferin might inhibit the HIV-1 protease, but is still effective against HIV peptidic protease inhibitor resistant strains. A combination of docking and pharmacophore methods clarified possible binding modes of mangiferin in the HIV-1 protease. The pharmacophore model of mangiferin consists of two hydrogen bond donors and two hydrogen bond acceptors. Compared to pharmacophore features found in commercially available drugs, three pharmacophoric elements matched well and one novel pharmacophore element was observed. Moreover, molecular docking analysis demonstrated that the pharmacophoric elements play important roles in binding HIV-1 protease. Mangiferin is a novel nonpeptidic protease inhibitor with an original structure that represents an effective drug development strategy for combating drug resistance.


Biomedical Chromatography | 2008

Identification of major alkaloids and steroidal saponins in rat serum by HPLC-diode array detection-MS/MS following oral administration of Huangbai-Zhimu herb-pair Extract

Chunhui Ma; Mingsong Fan; Yihong Tang; Zhixiong Li; Zhaolin Sun; Guan Ye; Chenggang Huang

Huangbai-Zhimu herb-pair (HBZMHP) is a widely used Chinese traditional medicine formula in treating various diseases; however, its active components have remained unknown. In this paper, serum chemistry and combined high-performance liquid chromatography (HPLC), diode-array detection and mass-spectrometry (MS) techniques were used to study the constituents of HBZMHP extract absorbed into rat serum after oral administration. A total of nine characteristic HPLC peaks in the TIC chromatograms were identified as magnoflorine (1), menisperine (2), palmatine (3), berberine (4), timosaponin N or timosaponin E1 (5), timosaponin D (6), timosaponin BIII, anemarsaponin C or xilingsaponin B (7) timosaponin BII (8) and timosaponin AIII (9). All of the identified peaks were constituents of HBZMHP extract. The results narrow the range of active compounds to be found in HBZMHP extract, and pave the way for the follow-up action mechanism research.


Biomedical Chromatography | 2012

Systematic screening and characterization of the major bioactive components of Poria cocos and their metabolites in rats by LC-ESI-MSn

Yun Ling; Mingcang Chen; Ke Wang; Zhaolin Sun; Zhixiong Li; Bin Wu; Chenggang Huang

Poria cocos is a well-known medicinal plant widely used in China and other East Asian countries owing to its various therapeutic effects. However, the bioactive constituents responsible for the pharmacological effects of Poria cocos and their metabolites in vivo are still unclear to date. The aim of the present study was to develop a practical method based on the combined use of the liquid chromatography coupled with electrospray ionization multistage tandem mass spectrometry (LC-ESI-MS(n) ) for the comprehensive and systematic separation and characterization of the bioactive constituents of Poria cocos extract and their metabolites in rats. Based on the proposed strategy, a total of 34 compounds were characterized from the extract of Poria cocos. Among them, eight were unambiguously identified by comparing their retention times and mass spectra with those of reference standards, and 26 were tentatively identified on the basis of their MS(n) fragmentation behaviors and molecular weight information from literatures. In vivo, seven compounds were successfully detected in rat urine whereas one was found in rat plasma. This study proposed a series of potential bioactive components and provided helpful chemical information for further research on the action mechanism of traditional Chinese medicine.


Journal of Cardiovascular Pharmacology | 2006

Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-γ

Yuanyuan Zhang; Haiyan Zhu; Chenggang Huang; Xiaolan Cui; Yingjie Gao; Yang Huang; Wenfeng Gong; Ye Zhao; Shanshan Guo

Coxsackievirus B3 (CVB3) is a major pathogen for viral myocarditis and dilated cardiomyopathy in children and young adults. The aim of this study was to determine the antiviral effects of astragaloside IV against CVB3, and the underlying mechanism. First, we evaluated antiviral effects of astragaloside IV in vitro by measuring the virus titers of CVB3 in primarily cultured myocardial cells infected with CVB3, and in vivo by assessing the morbidity, mortality, heart-to-body weight ratio (HW/BW), and virus titers in BALB/c mice infected with CVB3. Then, we performed serum pharmacological experiments by testing the effect of sera from SD rats treated with astragaloside IV on proliferation of CVB3 in primarily cultured myocardial cells. Finally, we determined the effect of astragaloside IV on IFN-γ mRNA expression in the hearts of infected BALB/c mice. We observed that astragaloside IV decreased virus titers of CVB3 in primarily cultured myocardial cells. Morbidity, mortality, HW/BW, and virus titers all decreased, and necrosis and mononuclear cell infiltration were alleviated in CVB3-infected mice treated with astragaloside IV, compared with those infected mice without the treatment. In addition, proliferation of CVB3 was inhibited by the sera of rats treated with astragaloside IV. Moreover, we observed that IFN-γ mRNA expression was increased in mice treated with astragaloside IV. Therefore, we conclude that astragaloside IV exerts antiviral effects against CVB3 by upregulating expression of IFN-γ mRNA.


Carbohydrate Polymers | 2016

Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice.

Pei Hu; Zhixiong Li; Mingcang Chen; Zhaolin Sun; Yun Ling; Jian Jiang; Chenggang Huang

A fucoidan, Sargassum fusiforme polysaccharide 65 (SFPS65) A, was isolated from a brown alga (S. fusiforme). SFPS65A had an estimated molecular weight of 90kDa and showed αD(20) -74.3288 (c 0.05, H2O). SFPS65A is composed of fucose, galactose, xylose, glucose, glucuronic acid, and mannose in the ratio of 19.23:9.58:6.64:1:6.52:2.57. The structural features of SFPS65A were investigated using composition analysis, methylation analysis, infrared spectrum, nuclear magnetic resonance spectroscopy, and electrospray ionization quadruple time-of-flight tandem mass spectroscopy. Results showed that SFPS65A has a main chain composed of →3)-β-l-Fucp-(1→3,4)-β-l-Fucp-(1→3,4)-β-l-Fucp-(1→ and connected with →3,4)-α-d-GlcAp-(1→, →4)-β-d-Xylp-(1→, →4)-α-d-Galp-(1→, →3,6)-α-d-Manp-(1→ alternately. The branches at O-3 of the fucosyl residue and O-3 of the hexosyl residues may include sulfate, →4)-β-l-Fucp-(1→, β-d-Xylp-(1→, and β-d-Xylp-(1→. SFPS65A exhibited an activity on Alzheimers disease in vivo in the pharmacological experiments by increasing the cognitive abilities of scopolamine-, ethanol-, and sodium nitrite-treated mice against memory deficits.


Journal of Pharmaceutical and Biomedical Analysis | 2011

Isolation, identification and antiviral activities of metabolites of calycosin-7-O-β-D-glucopyranoside.

Luying Chen; Zhixiong Li; Yihong Tang; Xiaolan Cui; Ronghua Luo; Shanshan Guo; Yongtang Zheng; Chenggang Huang

In vivo and in vitro metabolites of calycosin-7-O-β-D-glucopyranoside in rats were identified using a specific and sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS(n)) method. The parent compound and twelve metabolites were found in rat urine after oral administration of calycosin-7-O-β-D-glucopyranoside. The parent compound and six metabolites were detected in rat plasma. In heart, liver, spleen, lung and kidney samples, respectively, six, eight, seven, nine and nine metabolites were identified, in addition to the parent compound. Three metabolites, but no trace of parent drug, were found in the rat intestinal flora incubation mixture and feces, which demonstrated cleavage of the glycosidic bond of the parent compound in intestines. The main phase I metabolic pathways of calycosin-7-O-β-D-glucopyranoside in rats were deglycosylation, dehydroxylation and demethylation reactions; phase II metabolism included sulfation, methylation, glucuronidation and glycosylation (probably). Furthermore, two metabolites commonly found in rat urine, plasma and tissues were isolated from feces and characterized by NMR. The antiviral activities of the metabolite calycosin against coxsackie virus B₃ (CVB₃) and human immunodeficiency virus (HIV) were remarkably stronger than those of calycosin-7-O-β-D-glucopyranoside.

Collaboration


Dive into the Chenggang Huang's collaboration.

Top Co-Authors

Avatar

Zhixiong Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaolin Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingsong Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guan Ye

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingcang Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yihong Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunhui Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haiyan Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pei Hu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge