Chenggong Sun
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chenggong Sun.
Organic Geochemistry | 1999
Carole McRae; Chenggong Sun; Colin E. Snape; Anthony E. Fallick; Duncan Taylor
The 13 C/ 12 C isotopic ratios for coal-derived polycyclic aromatic hydrocarbons (PAHs) from a number of processes encompassing low and high temperature carbonisation, gasification and combustion have been determined using gas chromatography-isotope ratio mass spectrometry (δ 13 C GC-IRMS). The results, in conjunction with those for PAHs released under controlled laboratory pyrolysis conditions, indicate that the primary control on the isotopic values of coal-derived PAHs is likely to be the extent of ring growth required to form PAHs during processing. Thus, for relatively mild conversion processes such as low temperature carbonisation where the major aromatics are alkyl substituted 2-3 ring PAHs, the isotopic signatures are similar to those of the parent coals (-24 to -25‰ for UK bituminous coals). However, the δ 13 C values for the PAHs become lighter in going to high temperature carbonisation (-25 to -27‰), gasification (-27 to -29‰ for old Town gas plants in the UK) and combustion (-29 to -31‰) as the extent of ring condensation increases and confirming that the PAHs are not released as primary volatiles. To demonstrate the potential of applying these differences to source apportion environmental PAHs where major inputs from coals can be expected, soil and vegetation samples taken close to a low temperature carbonisation plant (Bolsover, North Derbyshire) have been analysed. In addition to low temperature coal tar, significant inputs of PAHs from transport fuels, high temperature carbonisation and possibly combustion (coal/biomass) have been inferred from the isotopic ratios, taken in conjunction with the differences in alkyl substitution patterns.
Marine Chemistry | 2003
Daniele Fabbri; Ivano Vassura; Chenggong Sun; Colin E. Snape; Carole McRae; Anthony E. Fallick
Abstract The origin of polycyclic aromatic hydrocarbon (PAH) contamination in sediments of a coastal lagoon of the Adriatic Sea (Pialassa, Baiona, Ravenna, Italy) has been investigated. Concentrations, molecular distributions and stable carbon isotopic ratios ( δ 13 C) of PAHs extracted from core sediments and soils have been determined by high pressure liquid chromatography (HPLC) with fluorescence and diode array detection (DAD), by gas chromatography–mass spectrometry (GC–MS) and isotopic ratio mass spectrometry (GC–IRMS). The total concentrations of PAHs in core sediments are highly variable, ranging from 30 to 112,000 ng/g and exhibit depth profiles similar to those registered for mercury and polyvinyl chloride (PVC). PVC was manufactured in the nearby industry from acetylene, in turn produced by partial combustion/pyrolysis of methane, the process considered responsible for PAH emission into the lagoon. In accordance, the molecular pattern of PAHs found in sediments is similar to that reported for the interior of fuel rich premixed flames of methane, being characterised by the dominance of pyrene, cyclopenta[ cd ]pyrene, benzo[ ghi ]fluoranthene, fluoranthene and by the presence of several five-membered ring PAHs, including high levels of 4 H -cyclopenta[ def ]phenanthrene and minor amounts of dicyclopentapyrenes. The extremely low δ 13 C values of sedimentary PAHs (from −62‰ to −36‰) confirm that local biogenic methane is their major source. The distribution of the isotopic signatures suggests PAHs were introduced into the lagoon by direct discharge into the water body rather than by atmospheric fallout. The uncommon molecular and isotopic distribution of these PAHs is proposed as fingerprinting specific for pyrolysis of biogenic methane useful to source apportionment.
Journal of Materials Chemistry | 2014
Bingjun Zhu; Kaixi Li; Jingjing Liu; Hao Liu; Chenggong Sun; Colin E. Snape; Zhengxiao Guo
A facile and efficient “spheridization” method is developed to produce nitrogen-enriched hierarchically porous carbon spheres of millimeters in diameter, with intricate micro-, meso- and macro-structural features. Such spheres not only show exceptional working capacity for CO2 sorption, but also satisfy practical requirements for dynamic flow in post-combustion CO2 capture. Those were achieved using co-polymerized acrylonitrile and acrylamide as the N-enriched carbon precursor, a solvent-exchange process to create hierarchically porous macro-sphere preforms, oxidization to induce cyclization of the polymer chains, and carbonization with concurrent chemical activation by KOH. The resulting carbon spheres show a relatively high CO2 uptake of 16.7 wt% under 1 bar of CO2 and, particularly, an exceptional uptake of 9.3 wt% under a CO2 partial pressure of 0.15 bar at 25 °C. Subsequent structural and chemical analyses suggest that the outstanding properties are due to highly developed microporous structures and the relatively high pyridinic nitrogen content inherited from the co-polymer precursor, incorporated within the hierarchical porous structures.
Chemcatchem | 2014
Changzhen Wang; Nannan Sun; Ning Zhao; Wei Wei; Jun Zhang; Tiejun Zhao; Yuhan Sun; Chenggong Sun; Hao Liu; Colin E. Snape
Ni–CaO–ZrO2 catalysts with different properties were prepared and tested for CO2 reforming of methane. The catalysts were characterized by means of transmission electron microscopy, thermogravimetric analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction to reveal their distinct properties and carbon deposition behaviors in the reforming reaction. It was found that the catalyst prepared by a coprecipitation method and ageing by heating to reflux exhibited a nanocrystalline structure with strong metal–support interaction, which was responsible for both high activity and stability, but it also exhibited the highest carbon formation rate among the tested catalysts. This result suggests that catalyst deactivation might not necessarily correlate with the amount of formed carbon, and the individual properties of carbon residuals could play a more decisive role. Carbon residuals on different catalysts were identified as amorphous carbon, encapsulating carbon, whisker carbon, and graphite, which had different influence on the deactivation. On the surface of the most active and stable catalyst, the carbon species mainly consisted of amorphous and whisker carbon, suggesting that the formation of such carbon species does not necessarily lead to catalyst deactivation. In contrast, the deactivation was found to be closely related to the formation of encapsulating carbon and graphite, which could coat the catalyst surface. The accumulation of different carbon residuals was proven to follow a formation–diffusion/elimination scenario, which was significantly influenced by the Ni particle size and Ni–ZrO2 interactions.
Fuel | 2003
Chenggong Sun; Colin E. Snape; Carole McRae; Anthony E. Fallick
It has been established previously [Anal. Commun. 33 (1996) 331; Analyst 123 (1998) 1519; Org. Geochem. 30 (1999) 881; Environ. Sci. Technol. 34 (2000) 4684] that, for thermal conversion regimes where volatiles survive to a significant degree (e.g. low and high temperature carbonisation, domestic combustion), the stable carbon isotopic signatures of polycyclic aromatic hydrocarbons (PAHs) are similar to those of the parent coals (ca. −25‰, cf. −23.5‰ for the coals). This information has been used to unambiguously identify coal-derived PAHs in contaminated land sites. Aromatic hydrocarbons in a number of samples analysed from a former foundry site at Mansfield displayed variable compositions with those containing predominately alkylated benzenes and naphthalenes having carbon stable isotopic ratios in the range of −28 to −30‰, typical of transport fuels. The aliphatic hydrocarbon distributions confirmed the petroleum origin and indicated that the oil had also been biodegraded. Less negative (enriched in 13C, −25 to −26‰) isotopic profiles were obtained for the fractions rich in 3–6 ring parent PAHs, indicating a significant input from coal utilisation. Separating the aromatic by ring size enabled the coal-derived 3–6 ring PAHs to be identified in samples where petroleum-derived alkylated benzenes and naphthalenes dominated. A similar situation to this with only a small input from coal-derived PAHs was found for a soil heavily contaminated with diesel fuel from the Motherwell area. Carbon stable isotopic data taken in conjunction with PAH distributions indicate that the coal tar contaminating an area of Glasgow Green, which was believed to be dumped during the Second World War and was unearthed recently, probably originated from a high temperature coking plant as opposed to a gas works, as indicated by the isotopic signatures of the distributions of PAHs.
Polycyclic Aromatic Compounds | 2000
Carole McRae; Chenggong Sun; Clare F. McMillan; Colin E. Snape; Anthony E. Fallick
Abstract To investigate the effects of domestic coal burning on the distribution and isotopic composition of environmental PAH, a series of soil samples were collected in a coal-burning village nearby Glasgow, UK. Analyses showed that, typically, PAHs in the Lochwinnoch village samples were isotopically heavy having δ13C values close to −25‰ that are consistent with the PAHs emanating from coal burning. It was also noted, however, that alkylated PAHs would appear to be more prominent in soot from coal fires than in the samples collected in Lochwinnoch where domestic combustion was determined to be the major source. Therefore, to address the possibility that parent PAHs may survive in soils preferentially, two weathering experiments have commenced using a low temperature coal carbonisation tar from the Coalite process. Initial results have shown that after as little as 80 days weathering period, parent PAHs, particularly fluoranthene and pyrene, become more prominent than alkylated species, suggesting that these compounds may survive oxidation/weathering to a greater extent than their alkylated counterparts.
RSC Advances | 2015
Nannan Sun; Chenggong Sun; Jingjing Liu; Hao Liu; Colin E. Snape; Kaixi Li; Wei Wei; Yuhan Sun
Surface modification of activated carbon beads via HNO3 oxidation and subsequent amination at elevated temperatures was investigated as a means to improve their performance for CO2 capture, and the effects of the resultant changes in porosity and surface chemistry on adsorption characteristics of the samples were studied. Characterisations conducted with elemental analysis, physical adsorption, X-ray photoelectron spectroscopy and scanning electron microscope demonstrate that both the porosity and surface chemistry of the carbon beads were tuned by the modification without any alteration of the integrity of the desirable spherical morphology. Adsorption evaluation with both thermogravimetric analysis and high pressure volumetric analysis under various conditions indicate that one of the modified samples had a high CO2 adsorption capacity (8.64 mmol g−1 at 20 bar and 30 °C) with fast adsorption/desorption kinetics, superior durability and good selectivity over N2 and H2. Both the unique spherical form (diameter = 1.2 ± 0.2 mm) and the superior adsorption performance render the modified carbon beads a promising candidate for CO2 capture especially in pre-combustion capture using pressure swing adsorption.
Ultrasonics Sonochemistry | 2018
Collins I. Ezeh; Marco Tomatis; Xiaogang Yang; Jun He; Chenggong Sun
Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m2/g) from 25 to 171m2/g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH- groups) basic sites with subsequent surge in the number of strong basic sites (O2-) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine modification and by chemisorption after the modification process.
Ultrasonics Sonochemistry | 2017
Collins I. Ezeh; Xiani Huang; Xiaogang Yang; Chenggong Sun; Jiawei Wang
To improve CO2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles.
Analytical chemistry insights | 2007
Mark A. Sephton; Will Meredith; Chenggong Sun; Colin E. Snape
Background: We have recently developed a new technique for quantitatively measuring protein-bound 3-nitrotyrosine (3-NT), a footprint of nitrosative stress, utilizing high-performance liquid chromatography with an electrochemical detection (HPLC-ECD) system. Using this system, we showed that 3-NT formation was upregulated in the sputum of both COPD and asthmatic patients. However, in order to improve the accuracy of the measurement system, We have to resolve some problems which were the influence of free amino acid form of 3-NT and of salivary contamination. Objectives: We initially investigated the amount of the free amino acid form of 3-NT in induced sputum and compared with that of protein-bound 3-NT. Next, we evaluated the concentration of protein-bound 3-NT in saliva and compared with that in induced sputum by means of HPLC-ECD. Methods: Five male COPD patients were enrolled. Induced sputum and saliva were obtained from the patients. The free amino acid form of 3-NT in sputum and saliva was measured by HPLC-ECD, and the protein-bound 3-NT and tyrosine in sputum and saliva were enzymatically hydrolyzed by Streptomyces griseus Pronase and measured for the protein hydrolysate by HPLC-ECD. Results: The mean value of the amount of protein-bound 3-NT was 65.0 fmol (31.2 to 106.4 fmol). On the other hand, the amount of the free amino acid form of 3-NT was under the detection limit (<10 fmol). The levels of both 3-NT (sputum: 0.55 ± 0.15 pmol/ml, saliva: 0.02 ± 0.01 pmol/ml, p < 0.01) and tyrosine (sputum: 0.81 ± 0.43 μmol/ml, saliva: 0.07 ± 0.04 μmol/ml, p < 0.01) in saliva were significantly lower than in sputum. The percentage of 3-NT in saliva to that in sputum was about 3.1%, and that of tyrosine was about 9.0%. Conclusion: The free amino acid form of 3-NT does not affect the measurement of protein-bound 3-NT. Furthermore, the influence of salivary contamination on the measurement of protein-bound 3-NT in induced sputum by means of HPLC-ECD was very small and could be negligible.A protein digestion system using immobilized enzymes for protein identification and glycochain analyses has been developed, and a vibration reaction unit for micro-scale sample convection on an enzyme-immobilized solid surface was constructed. BSA as a model substrate was digested by this unit, and was successfully identified by mass spectrometry (MS) analyses. Compared to the conventional liquid-phase digestion, the reaction unit increased the number of matched peptides from 9 to 26, protein score from 455 to 1247, and sequence coverage from 21% to 48%. Glycopeptidase F (NGF), an enzyme that cleaves N-glycans from glycoproteins, was also immobilized and used to remove the glycochains from human immunoglobulin G (IgG). Trypsin and NGF were immobilized on the same solid surface and used to remove glycochains from IgG in single-step. Glycochains were labeled with fluorescent reagent and analyzed by HPLC. Several peaks corresponding to the glycochains of IgG were detected. These results suggested that the single-step digestion system, by immobilized multiple enzymes (trypsin and NGF) would be effective for the rapid structural analysis of glycoproteins.This research shows a novel method for hazard identification of a chemical and UV light on a single cell level with a laser probe beam. The laser probe beam was passed through interface of cell membrane/culture medium of a cultured human hepatoblastoma cell line HepG2. Deflection of the laser probe beam, which was induced by changes in concentration gradients due to the active materials movement across the cell membrane, was monitored. When a toxic hazard existed, a living cell was expected to be killed or injured, or cellular behaviors to be changed greatly. Then, the changing deflection signal from the living cell would become unchanged or altered in a different way. This was successfully demonstrated with cytotoxity of UV light and H2O2. Most of the cultured HepG2 cells showed changing deflection signals after 10 min illumination of UV-visible light longer than 370 nm, while almost all HepG2 cells showed unchanged deflection signal after 10 min illumination of UV-visible light with wavelength longer than 330 nm. The results suggested that UV light between 330–370 nm could kill the cells. Additions of H2O2 solution with different concentrations to the cell cultures caused the changing deflection signal from a living cell either unchanged or changed in different trend, suggesting toxicity of H2O2 to the cells. The results from the beam deflection detection agreed well with those obtained by the conventional trypane blue method.Escherichia coli as a plasmid recipient cell was dispersed in a chrysotile colloidal solution, containing chrysotile adsorbed to plasmid DNA (chrysotile-plasmid cell mixture). Following this, the chrysotile-plasmid cell mixture was dropped onto the surface of an elastic body, such as agarose, and treated physically by sliding a polystyrene streak bar over the elastic body to create friction. Plasmid DNA was easily incorporated into E. coli, and antibiotic resistance was conferred by transformation. The transformation efficiency of E. coli cultured in solid medium was greater than that of E. coli cultured in broth. To obtain greater transformation efficiency, we attempted to determine optimal transformation conditions. The following conditions resulted in the greatest transformation efficiency: the recipient cell concentration within the chrysotile-plasmid cell mixture had an optical density greater than or equal to 2 at 550 nm, the vertical reaction force applied to the streak bar was greater than or equal to 40 g, and the rotation speed of the elastic body was greater than or equal to 34 rpm. Under these conditions, we observed a transformation efficiency of 107 per μg plasmid DNA. The advantage of achieving bacterial transformation using the elastic body exposure method is that competent cell preparation of the recipient cell is not required. In addition to E. coli, other Gram negative bacteria are able to acquire plasmid DNA using the elastic body exposure method.We have determined and quantified spectrophotometrically the capacity of producing reactive oxygen species (ROS) as 1O2 during the photolysis with UV-A light of 5 new synthesized naphthyl ester derivates of well-known quinolone antibacterials (nalidixic acid (1), cinoxacin (2), norfloxacin (3), ciprofloxacin (4) and enoxacin (5)). The ability of the naphthyl ester derivatives (6–10) to generate singlet oxygen were detecting and for the first time quantified by the histidine assay, a sensitive, fast and inexpensive method. The following tendency of generation of singlet oxygen was observed: compounds 7 > 10 > 6 > 8 > 9 >> parent drugs 1–5.High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (μMol ml−1/μMol ml−1)], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.Microalbuminuria is associated with hypertension and is a strong risk factor for subsequent chronic disease, both renal and coronary heart disease (CHD), Presently there are several methods available for measurement of microalbuminuria. The aim of this study was to evaluate if the three different methods gave similar information or if one of the assays were superior to the others. Blood pressure, inflammatory markers and cardiovascular mortality and morbidity were correlated with urine albumin analysed with a point-of-care testing (POCT) instrument, nephelometric determination of albumin and albumin/creatinine ratio in elderly males. The study population consisted of 103 diabetic and 603 nondiabetic males (age 77 years) in a cross-sectional study. We analyzed urine albumin with a HemoCue® Urine Albumin POCT instrument and a ProSpec® nephelometer and albumin/creatinine ratio. There were strong correlations between both systolic and diastolic blood pressure and all three urine albumin methods (p < 0.0001). There were also significant correlations between the different urine albumin measurements and serum amyloid A component, high-sensitivity C-reactive protein and interleukin-6. The three different urine albumin methods studied provided similar information in relation to cardiovascular disease. There was a strong correlation between systolic and diastolic blood pressure and microalbuminuria in both the whole study population and in nondiabetic males emphasizing the role of hypertension in glomerular damage. The good correlation between the studied urine albumin measurements show that all three methods can be used for monitoring urine albumin excretion.Chromium is an important constituent widely used in different industrial processes for production of various synthetic materials. For evaluation of workers’ exposure to trace toxic metal of Cr (III), environmental and biological monitoring are essential processes, in which, preparation of samples is one of the most time-consuming and error-prone aspects prior to analysis. The use of solid-phase extraction (SPE) has grown and is a fertile technique of sample preparation as it provides better results than those produced by liquid-liquid extraction (LLE). SPE using mini columns filled with XAD-4 resin was optimized regarding to sample pH, ligand concentration, loading flow rate, elution solvent, sample volume, elution volume, amount of resins, and sample matrix interferences. Chromium was retained on solid sorbent and was eluted with 2 M HNO3 followed by simple determination of analytes by using flame atomic absorption spectrometery. Obtained recoveries of metal ion were more than 92%. The optimized procedure was also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. Through this study, suitable results were obtained for relative standard deviation, therefore, it is concluded that, this optimized method can be considered to be successful in simplifying sample preparation for trace residue analysis of Cr in different matrices for evaluation of occupational and environmental exposures. To evaluate occupational exposure to chromium, 16 urine samples were taken, prepared, and analyzed based on optimized procedure.Mistletoe Extracts (ME) are of growing interest to pharmacological research because of their apoptosis-inducing/cytostatic and immunomodulatory effects. The standardization of the three different groups of Mistletoe Isolectins (ML-I, II and III) is often rendered more difficult since the primary structures are nearly identical. Their classification is based on their Galactose- and N-acetyl-D-galactosamine (GalNAc)-specificity which was measured by various inhibitory assays. The aim of the present study was to improve the characterization of the direct binding activity of the isolectins from ME to immobilized lactose, GalNAc and to the oligosaccharide asialofetuin. After careful ultrafiltration of fresh ME, affinity chromatography was carried out using lactose- agarose, GalNAc—agarose and asialofetuin—affigel 15 columns. MLs were further purified by Sephadex G-100 or by cation exchange chromatography which was adapted to a Fast Protein Liquid Chromatography (FPLC) system. Proteins from both fresh plants and commercial ME were able to bind immobilized lactose to a considerable extent. The majority of this lectin has a B-chain with a Molecular Weight (MW) of 34kD and an A-chain with a MW of 29 kD (ML-I). Only a minor part of the lactose-binding proteins has a lower MW, namely 32kD and 27kD (MLII). However, neither MLs which were eluted from lactose columns, nor the proteins from fresh plant or ME showed a direct binding to the immobilized GalNAc. In spite of this deficiency, GalNAc was able to induce a considerable (25% and 32%) inhibitory effect on their binding to immobilized asialofetuin indicating a discrepancy between the lectin binding and inhibiting effects of GalNAC. Consequently, for an improved standardization of ME more specific sugar molecules are necessary.Pentavalent technetium-99m dimercaptosuccinic acid (99mTc-(V)DMSA) is a tumor-seeking agent which was introduced to evaluate, image, and manage many types of cancers. In this review, the beginning of, and the most recent applications of using this agent was appraised. The relation with tumor cell detection and proliferation was reported and several mechanisms of uptake of 99mTc-(V)DMSA in tumor cells are described.We studied the near UV absorption spectrum of canine plasminogen. There are 19 tryptophans, 19 phenylalanines and 34 tyrosines in the protein. 4th derivative spectra optimized for either tryptophan or tyrosine give a measure of the polarity of the environments of these two aromatic amino acids. Plasminogen at temperatures between 0 °C and 37 °C exists as a mixture of four conformations: closed-relaxed, open-relaxed, closed-compact, and open-compact. The closed to open transition is driven by addition of ligand to a site on the protein. The relaxed to compact transition is driven by increasing temperature from 0 °C to above 15–20 °C. When the conformation of plasminogen is mainly closed-relaxed, the 4th derivative spectra suggest that the average tryptophan environment is similar to a solution of 20% methanol at the same temperature. Under the same conditions, 4th derivative spectra suggest that the average tyrosine environment is similar to water. These apparent polarities change as the plasminogen is forced to assume the other conformations. We try to rationalize the information based on the known portions of the plasminogen structure.Chirasil-β-Dex containing an undecamethylene spacer (C11-Chirasil-Dex) was synthesized and used as chiral stationary phase (CSP) in enantioselective gas chromatography (GC). The versatility of the new stationary phase in the simultaneous enantiomeric separation of a set of N-alkylated barbiturates is demonstrated.We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.The present study introduces a method for determining the labile iron pool (LIP) in human lymphocytes. It is measured using the probe CP655, the fluorescence of which is stoichiometrically quenched by the addition of iron. The intracellular CP655 fluorescence in lymphocytes was quenched by increasing intracellular iron concentrations using the highly lipophilic 8-hydroxyquinoline iron complex. Intracellular fluorescence quenching, mediated by the physiological intracellular labile iron, can be recovered on the addition of excess membrane-permeable iron chelator, CP94. The intracellular probe concentration was measured using laser scanning microscopy. An ex situ calibration was performed in a “cytosolic” medium based on the determined intracellular CP655 concentration and probe fluorescence quenching in the presence of iron. The concentration of the LIP of healthy human lymphocytes was determined to be 0.57 ± 0.27 μM. The use of the fluorescent probe CP655 renders it possible to record the time course of iron uptake and iron chelation by CP94 in single intact lymphocytes.The aim of this study is to adopt the approach of metabolic fingerprinting through the use of Fourier Transform Infrared (FTIR) technique to understand changes in the chemical structure in Padina tetrastromatica (Hauck). The marine brown alga under study was grown in two different environmental conditions; in natural seawater (P. tetrastromatica (c)) and in seawater suplemented with 50 ppm of cadmium (P. tetrastromatica (t)) for a three-week period in the laboratory. The second derivative, IR specrum in the mid-infrared region (4000–400 cm−1) was used for discriminating and identifying various functional groups present in P. tetrastromatica (c). On exposure to Cd, P. tetrastromatica (t) accumulated 412 ppm of Cd and showed perturbation in the band structure in the mid-IR absorption region. Variation in spectral features of the IR bands of P. tetrastromatica (untreated and treated) suggests that cadmium ions bind to hydroxyl, amino, carbonyl and phosphoryl functionalities. This was attributable to the presence of the following specific bands. A band at 3666 cm−1 in untreated P. tetrastromatica (c) while a band at 3560 cm−1 in Cd-treated P. tetrastromatica (t) due to non bonded and bonded O-H respectively. Similarly, non bonded N-H for P. tetrastromatica (c) showed two bands at 3500 cm−1 and 3450 cm−1 due to the N-H stretching vibrations and a band at 1577 cm−1 due to N-H bending vibrations, while an intense band at 3350 cm−1 due to bonded N-H stretching vibrations and at 1571 cm−1 due to bending vibrations was observed for Cd-treated P. tetrastromatica (t). Involvement of ester carbonyl group is characterized by the presence of a band at 1764 cm−1 in untreated P. tetrastromatica (c) while the Cd-treated P. tetrastromatica (t) showed the band at 1760 cm−1. The intensity of the band at 1710 cm−1 in the control samples decreased drastically after cadmium treatment indicating carbonyl of COOH to be involved in metal chelation. A band at 1224 cm−1 for untreated P. tetrastromatica (c) and at 1220 cm−1 for Cd-treated P. tetrastromatica (t) is indicative of the involvement of phosphoryl group in metal binding. Several other such changes were also evident and discussed in this paper. Based on our observation, FTIR technique proves to be an efficient tool for detecting structural changes and probable binding sites induced by the presence of a metal pollutant, cadmium, in the marine environment.A high-performance liquid chromatographic (HPLC) method has been developed for the separation and determination of S- and R-enantiomers of betaxolol in tablets and ophthalmic preparations. Baseline resolution was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with fluorescence detection at excitation/emission wavelengths 275/305 nm. The polar ionic mobile phase (PIM) consists of methanol-glacial acetic acid-triethylamine, (100:0.020:0.025, v/v/v) has been used at a flow rate of 1.5 ml/min. All analytes with S-(–)-atenolol as internal standard were conducted at ambient temperature. The method is highly specific where another coformulated compounds did not interfere. The stability of betaxolol enantiomers under different degree of temperature also studied. The results showed that it is stable for at least 7 days at 70°C. The method validated for its linearity, accuracy, precision and robustness. Experimental design was used during validation to evaluate method robustness. Using the chromatographic conditions described, S- and R-betaxolol were well resolved with mean retention times of 11.3 and 12.6 min, respectively. Linear response (r > 0.997) was observed over the range of 10–500 ng/ml of betaxolol enantiomers, with detection limit of 5 ng/ml. The recoveries of S- and R-betaxolol from tablets and ophthalmic preparation ranged from 97.4 to 101.4% and 98.0 to 102.0%, respectively. The mean relative standard deviation (R.S.D.%) for both enantiomers were 1.1–1.4% and 1.3–1.7% in tablets and ophthalmic solution, respectively.Protein kinases catalyze the transfer of the γ-phosphoryl group of adenosine triphosphate (ATP) to the hydroxyl groups of protein side chains, and they play critical roles in regulating cellular signal transduction and other biochemical processes. They are attractive targets for today’s drug discovery and development, and many pharmaceutical companies are intensively developing various kinds of protein kinase inhibitors. A good example is the recent success with the Bcr-Abl tyrosine kinase inhibitor imatinib mesylate (Gleevec™) in the treatment of chronic myeloid leukemia. Though imatinib has dramatically improved the treatment of Bcr-Abl-positive chronic myeloid leukemia, resistance is often found in patients with advanced-stage disease. Several mechanisms have been proposed to explain this resistance, including point mutations within the Abl kinase domain, amplification of the bcr-abl gene, overexpression of the corresponding mRNA, increased drug efflux mediated by P-glycoprotein, and activation of the Src-family kinase (SFK) Lyn. We set out to develop a novel drug whose affinity for Abl is higher than that of imatinib and whose specificity in inhibiting Lyn is higher than that of SFK/Abl inhibitors such as dasatinib (Sprycel™) or bosutinib (SKI-606). Our work has led to the development of NS-187 (INNO-406), a novel Abl/Lyn dual tyrosine kinase inhibitor with clinical prospects. To provide an overview of how a selective kinase inhibitor has been developed, this review presents chemical-modification studies carried out with the guidance of molecular modeling, the structural basis for the high potency and selectivity of NS-187 based on the X-ray structure of the NS-187/Abl complex, and the biological profiling of NS-187, including site-directed mutagenesis experiments.