Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengjian Mao is active.

Publication


Featured researches published by Chengjian Mao.


Journal of Biological Chemistry | 2008

A New Small Molecule Inhibitor of Estrogen Receptor α Binding to Estrogen Response Elements Blocks Estrogen-dependent Growth of Cancer Cells

Chengjian Mao; Nicole M. Patterson; Milu T. Cherian; Irene O. Aninye; Chen Zhang; Jamie Bonéy Montoya; Jingwei Cheng; Karson S. Putt; Paul J. Hergenrother; Elizabeth M. Wilson; Ann M. Nardulli; Steven K. Nordeen; David J. Shapiro

Estrogen receptor α (ERα) plays an important role in several human cancers. Most current ERα antagonists bind in the receptor ligand binding pocket and compete for binding with estrogenic ligands. Instead of the traditional approach of targeting estrogen binding to ER, we describe a strategy using a high throughput fluorescence anisotropy microplate assay to identify small molecule inhibitors of ERα binding to consensus estrogen response element (cERE) DNA. We identified small molecule inhibitors of ERα binding to the fluorescein-labeled (fl)cERE and evaluated their specificity, potency, and efficacy. One small molecule, theophylline, 8-[(benzylthio)methyl]-(7CI,8CI) (TPBM), inhibited ERα binding to the flcERE (IC50 ∼ 3 μm) and inhibited ERα-mediated transcription of a stably transfected ERE-containing reporter gene. Inhibition by TPBM was ER-specific, because progesterone and glucocorticoid receptor transcriptional activity were not significantly inhibited. In tamoxifen-resistant breast cancer cells that overexpress ERα, TPBM inhibited 17β-estradiol (E2)-ERα (IC50 9 μm) and 4-hydroxytamoxifen-ERα-mediated gene expression. Chromatin immunoprecipitation showed TPBM reduced E2·ERα recruitment to an endogenous estrogen-responsive gene. TPBM inhibited E2-dependent growth of ERα-positive cancer cells (IC50 of 5 μm). TPBM is not toxic to cells and does not affect estrogen-independent cell growth. TPBM acts outside of the ER ligand binding pocket, does not act by chelating the zinc in ER zinc fingers, and differs from known ERα inhibitors. Using a simple high throughput screen for inhibitors of ERα binding to the cERE, a small molecule inhibitor has been identified that selectively inhibits ERα-mediated gene expression and estrogen-dependent growth of cancer cells.


Journal of Biological Chemistry | 2011

Small Molecule Inhibitors as Probes for Estrogen and Androgen Receptor Action

David J. Shapiro; Chengjian Mao; Milu T. Cherian

Because activated estrogen (ER) and androgen (AR) receptors stimulate cell proliferation in breast and prostate cancer, inhibiting their actions represents a major therapeutic goal. Most efforts to modulate ER and AR activity have focused on inhibiting the synthesis of estrogens or androgens or on the identification of small molecules that act by competing with agonist hormones for binding in the ligand-binding pocket of the receptor. An alternative approach is to implement screens for small molecule inhibitors that target other sites in the pathway of steroid receptor action. Many of these second-site inhibitors directly target ER or AR; others have still unknown sites of action. Small molecule inhibitors that target second sites represent new leads with clinical potential; they serve as novel modulators of receptor action; and they can reveal new and as yet unidentified interactions and pathways that modulate ER and AR action.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression

Neal Andruska; Xiaobin Zheng; Xujuan Yang; Chengjian Mao; Mathew M. Cherian; Lily Mahapatra; William G. Helferich; David J. Shapiro

Significance Late-stage estrogen receptor α (ERα)-positive breast and ovarian cancers exhibit many regulatory alterations and therefore resist therapy. Our novel ERα inhibitor, BHPI, stops growth and often kills drug-resistant ERα+ cancer cells and induces rapid and substantial tumor regression in a mouse model of human breast cancer. BHPI distorts a normally protective estrogen–ERα-mediated activation of the unfolded protein response (UPR) and elicits sustained UPR activation. The UPR cannot be deactivated because BHPI, acting at a second site, inhibits production of proteins that normally help turn it off. This persistent activation converts the UPR from protective to lethal. Targeting therapy-resistant ERα-positive cancer cells by converting the UPR from cytoprotective to cytotoxic may hold significant therapeutic promise. Recurrent estrogen receptor α (ERα)-positive breast and ovarian cancers are often therapy resistant. Using screening and functional validation, we identified BHPI, a potent noncompetitive small molecule ERα biomodulator that selectively blocks proliferation of drug-resistant ERα-positive breast and ovarian cancer cells. In a mouse xenograft model of breast cancer, BHPI induced rapid and substantial tumor regression. Whereas BHPI potently inhibits nuclear estrogen–ERα-regulated gene expression, BHPI is effective because it elicits sustained ERα-dependent activation of the endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), and persistent inhibition of protein synthesis. BHPI distorts a newly described action of estrogen–ERα: mild and transient UPR activation. In contrast, BHPI elicits massive and sustained UPR activation, converting the UPR from protective to toxic. In ERα+ cancer cells, BHPI rapidly hyperactivates plasma membrane PLCγ, generating inositol 1,4,5-triphosphate (IP3), which opens EnR IP3R calcium channels, rapidly depleting EnR Ca2+ stores. This leads to activation of all three arms of the UPR. Activation of the PERK arm stimulates phosphorylation of eukaryotic initiation factor 2α (eIF2α), resulting in rapid inhibition of protein synthesis. The cell attempts to restore EnR Ca2+ levels, but the open EnR IP3R calcium channel leads to an ATP-depleting futile cycle, resulting in activation of the energy sensor AMP-activated protein kinase and phosphorylation of eukaryotic elongation factor 2 (eEF2). eEF2 phosphorylation inhibits protein synthesis at a second site. BHPI’s novel mode of action, high potency, and effectiveness in therapy-resistant tumor cells make it an exceptional candidate for further mechanistic and therapeutic exploration.


Journal of Biological Chemistry | 2010

A noncompetitive small molecule inhibitor of estrogen-regulated gene expression and breast cancer cell growth that enhances proteasome-dependent degradation of estrogen receptor α

Nicole M. Kretzer; Milu T. Cherian; Chengjian Mao; Irene O. Aninye; Philip D. Reynolds; Rachel Schiff; Paul J. Hergenrother; Steven K. Nordeen; Elizabeth M. Wilson; David J. Shapiro

The mechanisms responsible for 17β-estradiol (E2)-stimulated breast cancer growth and development of resistance to tamoxifen and other estrogen receptor α (ERα) antagonists are not fully understood. We describe a new tool for dissecting ERα action in breast cancer, p-fluoro-4-(1,2,3,6,-tetrahydro-1,3-dimethyl-2-oxo-6-thionpurin-8-ylthio) (TPSF), a potent small-molecule inhibitor of estrogen receptor α that does not compete with estrogen for binding to ERα. TPSF noncompetitively inhibits estrogen-dependent ERα-mediated gene expression with little inhibition of transcriptional activity by NF-κB or the androgen or glucocorticoid receptor. TPSF inhibits E2-ERα-mediated induction of the proteinase inhibitor 9 gene, which is activated by ERα binding to estrogen response element DNA, and the cyclin D1 gene, which is induced by tethering ERα to other DNA-bound proteins. TPSF inhibits anchorage-dependent and anchorage-independent E2-ERα-stimulated growth of MCF-7 cells but does not inhibit growth of ER-negative MDA-MB-231 breast cancer cells. TPSF also inhibits ERα-dependent growth in three cellular models for tamoxifen resistance; that is, 4-hydroxytamoxifen-stimulated MCF7ERαHA cells that overexpress ERα, fully tamoxifen-resistant BT474 cells that have amplified HER-2 and AIB1, and partially tamoxifen-resistant ZR-75 cells. TPSF reduces ERα protein levels in MCF-7 cells and several other cell lines without altering ERα mRNA levels. The proteasome inhibitor MG132 abolished down-regulation of ERα by TPSF. Thus, TPSF affects receptor levels at least in part due to its ability to enhance proteasome-dependent degradation of ERα. TPSF represents a novel class of ER inhibitor with significant clinical potential.


Journal of Biomolecular Screening | 2012

Evaluation of a luciferase-based reporter assay as a screen for inhibitors of estrogen-ERα-induced proliferation of breast cancer cells.

Neal Andruska; Chengjian Mao; Mathew M. Cherian; Chen Zhang; David J. Shapiro

Estrogens, acting through estrogen receptor α (ERα), stimulate breast cancer proliferation, making ERα an attractive drug target. Since 384-well format screens for inhibitors of proliferation can be challenging for some cells, inhibition of luciferase-based reporters is often used as a surrogate end point. To identify novel small-molecule inhibitors of 17β-estradiol (E2)–ERα-stimulated cell proliferation, we established a cell-based screen for inhibitors of E2-ERα induction of an estrogen response element (ERE)3–luciferase reporter. Seventy-five “hits” were evaluated in tiered follow-up assays to identify where hits failed to progress and evaluate their effectiveness as inhibitors of E2-ERα-induced proliferation of breast cancer cells. Only 8 of 75 hits from the luciferase screen inhibited estrogen-induced proliferation of ERα-positive MCF-7 and T47D cells but not control ERα-negative MDA-MB-231 cells. Although 12% of compounds inhibited E2-ERα-stimulated proliferation in only one of the ERα-positive cell lines, 40% of compounds were toxic and inhibited growth of all the cell lines, and ~37% exhibited little or no ability to inhibit E2-ERα-stimulated cell proliferation. Representative compounds were evaluated in more detail, and a lead ERα inhibitor was identified.


Journal of Biomolecular Screening | 2014

High-Throughput Fluorescence Anisotropy Screen for Inhibitors of the Oncogenic mRNA Binding Protein, IMP-1

Lily Mahapatra; Chengjian Mao; Neal Andruska; Chen Zhang; David J. Shapiro

Cancer cell proliferation is regulated by oncogenes, such as c-Myc. An alternative approach to directly targeting individual oncogenes is to target IMP-1, an oncofetal protein that binds to and stabilizes messenger RNAs (mRNAs), leading to elevated expression of c-Myc and other oncogenes. Expression of IMP-1 is tightly correlated with a poor prognosis and reduced survival in ovarian, lung, and colon cancer. Small-molecule inhibitors of IMP-1 have not been reported. We established a fluorescence anisotropy/polarization microplate assay (FAMA) for analyzing binding of IMP-1 to a fluorescein-labeled 93 nucleotide c-Myc mRNA target (flMyc), developed the assay as a highly robust (Z′ factor = 0.60) FAMA-based high-throughput screen for inhibitors of binding of IMP-1 to flMyc, and carried out a successful pilot screen of 17,600 small molecules. Our studies support rapidly filtering out toxic nonspecific inhibitors using an early cell-based assay in control cells lacking the target protein. The physiologic importance of verified hits from the in vitro high-throughput screen was demonstrated by identification of the first small-molecule IMP-1 inhibitor, a lead compound that selectively inhibits proliferation of IMP-1–positive cancer cells with very little or no effect on proliferation of IMP-1–negative cells.


Scientific Reports | 2016

Antiestrogen Resistant Cell Lines Expressing Estrogen Receptor α Mutations Upregulate the Unfolded Protein Response and are Killed by BHPI

Chengjian Mao; Mara Livezey; Ji Eun Kim; David J. Shapiro

Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD538G replace one or both wild-type ERα genes. In 2-dimensional, and in quantitative anchorage-independent 3-dimensional cell culture, ERαY537S and ERαD538G cells exhibited estrogen-independent growth. A progestin further increased their already substantial proliferation in micromolar 4-hydroxytamoxifen and fulvestrant/ICI 182,780 (ICI). Our recently described ERα biomodulator, BHPI, which hyperactivates the unfolded protein response (UPR), completely blocked proliferation. In ERαY537S and ERαD538G cells, estrogen-ERα target genes were constitutively active and partially antiestrogen resistant. The UPR marker sp-XBP1 was constitutively activated in ERαY537S cells and further induced by progesterone in both cell lines. UPR-regulated genes associated with tamoxifen resistance, including the oncogenic chaperone BiP/GRP78, were upregulated. ICI displayed a greater than 2 fold reduction in its ability to induce ERαY537S and ERαD538G degradation. Progestins, UPR activation and perhaps reduced ICI-stimulated ERα degradation likely contribute to antiestrogen resistance seen in ERαY537S and ERαD538G cells.


Translational Oncology | 2017

A Novel IMP1 Inhibitor, BTYNB, Targets c-Myc and Inhibits Melanoma and Ovarian Cancer Cell Proliferation

Lily Mahapatra; Neal Andruska; Chengjian Mao; Jeremy Le; David J. Shapiro

The oncofetal mRNA-binding protein, IMP1 or insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP1), binds to and stabilizes c-Myc, β-TrCP1, and other oncogenic mRNAs, leading to increased expression of the proteins encoded by its target mRNAs. IMP1 is frequently overexpressed in cancer and is strongly correlated with a poor prognosis and reduced survival in melanoma, ovarian, breast, colon, and lung cancer. While IMP1 is an attractive anticancer drug target, there are no small molecule inhibitors of IMP1. A fluorescence anisotropy-based assay was used to screen 160,000 small molecules for their ability to inhibit IMP1 binding to fluorescein-labeled c-Myc mRNA. The small molecule, BTYNB, was identified as a potent and selective inhibitor of IMP1 binding to c-Myc mRNA. In cells, BTYNB downregulates several mRNA transcripts regulated by IMP1. BTYNB destabilizes c-Myc mRNA, resulting in downregulation of c-Myc mRNA and protein. BTYNB downregulates β-TrCP1 mRNA and reduces activation of nuclear transcriptional factors-kappa B (NF-κB). The oncogenic translation regulator, eEF2, emerged as a new IMP1 target mRNA, enabling BTYNB to inhibit tumor cell protein synthesis. BTYNB potently inhibited proliferation of IMP1-containing ovarian cancer and melanoma cells with no effect in IMP1-negative cells. Overexpression of IMP1 reversed BTYNB inhibition of cell proliferation. BTYNB completely blocked anchorage-independent growth of melanoma and ovarian cancer cells in colony formation assays. With its ability to target c-Myc and to inhibit proliferation of difficult-to-target melanomas and ovarian cancer cells, and with its unique mode of action, BTYNB is a promising small molecule for further therapeutic evaluation and mechanistic studies.


Cancer Research | 2017

Structurally novel antiestrogens elicit differential responses from constitutively active mutant estrogen receptors in breast cancer cells and tumors

Yuechao Zhao; Mary J. Laws; Valeria Sanabria Guillen; Yvonne S. Ziegler; Jian Min; Abhishek Sharma; Sung Hoon Kim; David Chu; Ben Ho Park; Steffi Oesterreich; Chengjian Mao; David J. Shapiro; Kendall W. Nettles; John A. Katzenellenbogen; Benita S. Katzenellenbogen

Many estrogen receptor α (ERα)-positive breast cancers develop resistance to endocrine therapy via mutation of ERs whose constitutive activation is associated with shorter patient survival. Because there is now a clinical need for new antiestrogens (AE) against these mutant ERs, we describe here our development and characterization of three chemically novel AEs that effectively suppress proliferation of breast cancer cells and tumors. Our AEs are effective against wild-type and Y537S and D538G ERs, the two most commonly occurring constitutively active ERs. The three new AEs suppressed proliferation and estrogen target gene expression in WT and mutant ER-containing cells and were more effective in D538G than in Y537S cells and tumors. Compared with WT ER, mutants exhibited approximately 10- to 20-fold lower binding affinity for AE and a reduced ability to be blocked in coactivator interaction, likely contributing to their relative resistance to inhibition by AE. Comparisons between mutant ER-containing MCF7 and T47D cells revealed that AE responses were compound, cell-type, and ERα-mutant dependent. These new ligands have favorable pharmacokinetic properties and effectively suppressed growth of WT and mutant ER-expressing tumor xenografts in NOD/SCID-γ mice after oral or subcutaneous administration; D538G tumors were more potently inhibited by AE than Y537S tumors. These studies highlight the differential responsiveness of the mutant ERs to different AEs and make clear the value of having a toolkit of AEs for treatment of endocrine therapy-resistant tumors driven by different constitutively active ERs. Cancer Res; 77(20); 5602-13. ©2017 AACR.


Steroids | 2016

Interplay between steroid hormone activation of the unfolded protein response and nuclear receptor action

Xiaobin Zheng; Neal Andruska; Liqun Yu; Chengjian Mao; Ji Eun Kim; Mara Livezey; William G. Helferich; David J. Shapiro

To identify new pathways of estrogen action and novel estrogen receptor α (ERα) biomodulators, we performed high throughput screening and used follow on assays and bioinformatics to identify small molecule ERα inhibitors with a novel mode of action. These studies led to identification of rapid extranuclear activation of the endoplasmic reticulum stress sensor, the unfolded protein response (UPR), as a new pathway of estrogen-ERα action. Moreover, increasing evidence indicates that the mechanism underlying anticipatory activation of the UPR is shared among steroid and peptide hormones and is conserved from insects to humans. It is likely that this newly unveiled extranuclear pathway is used by diverse mitogenic hormones to prepare cells for the increased protein folding load that will occur during subsequent cell proliferation. Demonstrating biological relevance, elevated expression of a UPR gene signature in ERα positive breast cancer is a powerful new prognostic marker tightly correlated with subsequent resistance to tamoxifen, tumor recurrence and poor survival. In addition, overexpression of epidermal growth factor receptor and HER2/neu is positively correlated with increased UPR activation in breast cancer. This review describes recent research that demonstrates the importance of anticipatory UPR activation in therapy resistant tumors and discusses a promising small molecule biomodulator that inhibits tumor growth by tuning this UPR signaling pathway.

Collaboration


Dive into the Chengjian Mao's collaboration.

Top Co-Authors

Avatar

Elizabeth M. Wilson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Steven K. Nordeen

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Philip D. Reynolds

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Rachel Schiff

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David Chu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Ross

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Acena-Nagel

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge