Chengkang Su
South China Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengkang Su.
Scientific Reports | 2015
Shaoxin Li; Linfang Li; Qiuyao Zeng; Yanjiao Zhang; Zhouyi Guo; Zhiming Liu; Mei Jin; Chengkang Su; Lin Lin; Junfa Xu; Songhao Liu
This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481–486, 682–687, 1018–1034, 1313–1323, 1450–1459 and 1582–1587 cm−1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.
ACS Applied Materials & Interfaces | 2017
Yi Li; Zhiming Liu; Yuqing Hou; Guangcun Yang; Xixi Fei; Henan Zhao; Yanxian Guo; Chengkang Su; Zhen Wang; Huiqing Zhong; Zhengfei Zhuang; Zhouyi Guo
A multifunctional nanoplatform based on black phosphorus quantum dots (BPQDs) was developed for cancer bioimaging and combined photothermal therapy (PTT) and photodynamic therapy (PDT). BPQDs were functionalized with PEG chains to achieve improved biocompatibility and physiological stability. The as-prepared nanoparticles exhibite prominent near-infrared (NIR) photothermal and red-light-triggered photodynamic properties. The combined therapeutic application of PEGylated BPQDs were then performed in vitro and in vivo. The results demonstrate that the combined phototherapy significantly promote the therapeutic efficacy of cancer treatment in comparison with PTT or PDT alone. BPQDs could also serve as the loading platform for fluorescent molecules, allowing reliable imaging of cancer cells. In addition, the low cytotoxicity and negligible side effects to main organs were observed in toxicity experiments. The theranostic characteristics of PEGylated BPQDs provide an uplifting potential for the future clinical applications.
Theranostics | 2016
Haolin Chen; Zhiming Liu; Songyang Li; Chengkang Su; Xuejun Qiu; Huiqing Zhong; Zhouyi Guo
In this work, novel theranostic platforms based on graphene oxide and AuNP core polyaniline shell (GO-Au@PANI) nanocomposites are fabricated for simultaneous SERS imaging and chemo-photothermal therapy. PANI, a new NIR photothermal therapy agent with strong NIR absorption, outstanding stability and low cytotoxicity is decorated on AuNPs by one-pot oxidative polymerization, then the Au@PANI core-shell nanoparticles are attached to the graphene oxide (GO) sheet via π-π stacking and electrostatic interaction. The obtained GO-Au@PANI nanohybirds exhibit excellent NIR photothermal transduction efficiency and ultrahigh drug-loading capacity. The nanocomposites can also serve as novel NIR SERS probes utilizing the intense SERS signals of PANI. Rapid SERS imaging of cancer cells is achieved using this ultrasensitive nanoprobe. GO-Au@PANI also reveals good capability of drug delivery with the DOX-loading efficiency of 189.2% and sensitive NIR/pH-responsive DOX release. The intracellular real-time drug release dynamics from the nanocomposites is monitored by SERS-fluorescence dual mode imaging. Finally, chemo-photothermal ablation of cancer cells is carried out in vitro and in vivo using GO-Au@PANI as high-performance chemo-photothermal therapeutic nanoagent. The theranostic applications of GO-Au@PANI endow it with great potential for personalized and precise cancer medicine.
Materials | 2017
Xixi Fei; Zhiming Liu; Yuqing Hou; Yi Li; Guangcun Yang; Chengkang Su; Zhen Wang; Huiqing Zhong; Zhengfei Zhuang; Zhouyi Guo
In this work, we report a facile method using MoS2 quantum dots (QDs) as reducers to directly react with HAuCl4 for the synthesis of Au nanoparticle@MoS2 quantum dots (Au NP@MoS2 QDs) core@shell nanocomposites with an ultrathin shell of ca. 1 nm. The prepared Au NP@MoS2 QDs reveal high surface enhanced Raman scattering (SERS) performance regarding sensitivity as well as the satisfactory SERS reproducibility and stability. The limit of detection of the hybrids for crystal violet can reach 0.5 nM with a reasonable linear response range from 0.5 μM to 0.5 nM (R2 ≈ 0.974). Furthermore, the near-infrared SERS detection based on Au NP@MoS2 QDs in living cells is achieved with distinct Raman signals which are clearly assigned to the various cellular components. Meanwhile, the distinguishable SERS images are acquired from the 4T1 cells with the incubation of Au NP@MoS2 QDs. Consequently, the straightforward strategy of using Au NP@MoS2 QDs exhibits great potential as a superior SERS substrate for chemical and biological detection as well as bio-imaging.
Current Medicinal Chemistry | 2017
Zhen Wang; Zhiming Liu; Chengkang Su; Biwen Yang; Xixi Fei; Yi Li; Yuqing Hou; Henan Zhao; Yanxian Guo; Zhengfei Zhuang; Huiqing Zhong; Zhouyi Guo
Ascribe to the unique two-dimensional planar nanostructure with exceptional physical and chemical properties, black phosphorous (BP) as the emerging inorganic two-dimensional nanomaterial with high biocompatibility and degradability has been becoming one of the most promising materials of great potentials in biomedicine. The exfoliated BP sheets possess ultra-high surface area available for valid bio-conjugation and molecular loading for chemotherapy. Utilizing the intrinsic near-infrared optical absorbance, BP-based photothermal therapy in vivo, photodynamic therapy and biomedical imaging has been realized, achieving unprecedented anti-tumor therapeutic efficacy in animal experiments. Additionally, the BP nanosheets can strongly react with oxygen and water, and finally degrade to non-toxic phosphate and phosphonate in the aqueous solution. This manuscript aimed to summarize the preliminary progresses on theranostic application of BP and its derivatives black phosphorus quantum dots (BPQDs), and discussed the prospects and the state-of-art unsolved critical issues of using BP-based material for theranostic applications.
BioMed Research International | 2016
Huiqing Zhong; Hui Yang; Yan Zhou; Zhouyi Guo; Xiuli Wu; Chengkang Su; Jia Long; Jin Lin; Xuemei Jiang
This study aimed to investigate the effect of electroacupuncture (EA) treatment through optical coherence tomography (OCT) in vivo on rats with adjuvant-induced arthritis. OCT images were obtained from the ankle of the right hind paws of the rats in control, model, and EA groups before modelling and 1 day, 8 days, 15 days, 22 days, and 29 days after modelling. Results demonstrated that the OCT signal of the ankle of the right hind paws of the rats was indistinct compared to 1 day after modelling and before modelling in the EA group. In the EA group, the light averaged attenuation coefficients of the ankle tissues decreased as treatment duration was prolonged after EA was administered (3.43, 2.96, 2.61, 2.42, and 2.29 mm−1, resp.). There was a significant difference in attenuation coefficient decrease between the 29th d and the 1st d for EA group compared with control group (P < 0.01). This condition indicated that the light absorption of the ankle of the treated rats in the EA group decreased. Therefore, OCT can be used to monitor the effect of treatment on rats with arthritis in vivo.
Scanning | 2015
Xuejun Qiu; Ke Xiong; Xiangping Ye; Zhitong Huang; Ying Chen; Chengkang Su; Zhengfei Zhuang; Zhouyi Guo; Songhao Liu
Confocal micro-Raman spectroscopy was used to distinguish human xanthelasma skin (HXS) from the human normal skin (HNS). Results showed that intensive Raman peaks at 1,269, 1,336, 1,448, and 1,656 cm(-1) increased obviously. Both 1,269 and 1,656 cm(-1) peaks showed that the proteins in HXS were mostly in the anti-parallel ß sheet conformation. While the intensities of bands at 1,032, 1,087, 1,300, and 1,448 cm(-1) belonged to lipids were enhanced in HXS spectrum compared to those in HNS spectrum. There were main intercellular lipids alkyl chains with minor proteins contribution at 1,087 cm(-1) and phenylalanine at 1,032 cm(-1) . To quantitative analysis of the difference, the ratio of I852/I829 was calculated, which was 1:1.04 ± 0.04 and 1:1.11 ± 0.02 for HNS and HXS (p < 0.01), respectively. The data indicated that some tyrosine residues, which form a hydrogen bond with H2 O prior to aggregation, were captured by strong hydrogen-bond acceptors in the aggregate. The decreased ratio of I852/I829 indicated more hydrophobic in HXS than HNS. Principal component analysis showed a one-to-one relationship between human xanthelasma skin and the corresponding Raman spectra. It could be given useful help for the diagnostication of xanthelasma.
Biomaterials Science | 2017
Guangcun Yang; Zhiming Liu; Yi Li; Yuqing Hou; Xixi Fei; Chengkang Su; Songmao Wang; Zhengfei Zhuang; Zhouyi Guo
Analytical and Bioanalytical Chemistry | 2017
Songyang Li; Zhiming Liu; Chengkang Su; Haolin Chen; Xixi Fei; Zhouyi Guo
Laser Physics | 2018
Yanjiao Zhang; Xiaoping Lai; Qiuyao Zeng; Linfang Li; Lin Lin; Shaoxin Li; Zhiming Liu; Chengkang Su; Minni Qi; Zhouyi Guo