Chengliang Wu
Zhejiang Chinese Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengliang Wu.
Journal of Ethnopharmacology | 2013
Peijian Tong; Chengliang Wu; Xiaofen Wang; Hongzhou Hu; Hongting Jin; Changyu Li; Ying Zhu; Letian Shan; Luwei Xiao
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi (lateral root of Aconitum carmichaeli) is a popular traditional Chinese medicine well known for its both therapeutic and high-toxic activities. Its toxic alkaloid ingredients, mainly aconitine, mesaconitine, and hypaconitine, are responsible for the high toxicity. However, to date, no detoxication strategy is available to completely eliminate Fuzis toxicity, and, whether Fuzis efficacy could be kept after detoxication, remain unknown and debatable. MATERIALS AND METHODS The purpose of this study was to establish and validate a complete-detoxication strategy for Fuzi via acute toxicity test, to clarify the detoxication mechanism by HPLC and titrimetric analyses, and to evaluate the therapeutic effect of detoxicated Fuzi on adjuvant arthritis (AA). Three processed Fuzi (Bai-fu-pian) with 30-min, 60-min, and 120-min decoctions, respectively, named dBfp-30, dBfp-60, and dBfp-120, were prepared for this study. For the acute toxicity test, their oral doses to male and female Kunming mice were up to 70-190g/kg body weight, and their toxicological profiles were evaluated by median lethal dose (LD50), maximal tolerance dose (MTD), minimal lethal dose (MLD), no-observed-adverse-effect-level (NOAEL), and time-concentration-mortality (TCM) modeling methods using a 14-day schedule with up to five doses. The HPLC analysis was performed to determine the detoxication-induced changes in composition and amount of aconitine, mesaconitine and hypaconitine in Fuzi, whilst the titrimetric method was adopted to estimate the amount changes of Fuzis total alkaloids. AA model was established by incomplete Freunds adjuvant injection in Wistar rats, and the animals physiological (body weight, food intake, etc.), clinical (hind paw volume), and immunological (IL-1 and TNF-α) parameters were assessed as markers of inflammation and arthritis. RESULTS With increasing decoction time, the acute toxicity of detoxicated Fuzi became decreased in the following order: dBfp-30 (LD50 of 145.1g/kg; MTD of 70g/kg; MLD of 100g/kg; NOAEL of 70g/kg) >dBfp-60 (too large LD50; MTD of 160g/kg; MLD of 190g/kg; NOAEL of 100g/kg) >dBfp-120 (no LD50; unlimited MTD; unlimited MLD; NOAEL of 130g/kg). dBfp-30 and dBfp-60 displayed the toxicity at a dose-dependent manner with maximum mortalities reaching 100% and 50% respectively, whereas no mortality or signs of intoxication was induced by dBfp-120. The chemical analyses revealed a dramatic reduction of the toxic alkaloids as well as total alkaloids in Fuzi after the detoxication, from which no level of aconitine and only minimum residual of mesaconitine (0.56±0.02μg/g) and hypaconitine (8.73±0.13μg/g) were detected in dBfp-120. However, no significant difference of total alkaloid amount was found among dBfp-30, dBfp-60, and dBfp-120 (P>0.05), suggesting an equivalent conversion from toxic alkaloids to its non-toxic derivants in dBfp-120. Further, also no significant differences were seen among dBfp-30, dBfp-60, and dBfp-120 for the therapeutic effects on physiological, clinical, and immunological parameters in AA rat, indicating that dBfp-120 is of non-toxicity and efficacy. CONCLUSIONS A complete-detoxication strategy has been developed successfully for ensuring the safe and effective use of Fuzi. The detoxication mechanism associated with elimination of toxic alkaloids has kept Fuzis efficacy, indicating a non-interdependent relationship between its efficacy and toxicity. This is the first report on such an optimal detoxication strategy and on the application of detoxicated Fuzi in AA. It may provide in depth understanding to the toxicological and pharmacological profiles of Fuzi and further benefit the herbal drug development with safety and efficacy for disease especially RA therapy.
Chinese Journal of Integrative Medicine | 2012
Ying‐xing Xu; Chengliang Wu; Yan Wu; Peijian Tong; Hongting Jin; Nanze Yu; Luwei Xiao
ObjectiveTo observe the function of wnt/β-catenin signal pathway on the process that epimedium-derived flavonoids (EFs) regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats, and to provide an experimental evidence for the mechanism of EFs on treating postmenopausal osteoporosis.MethodsBone marrow stromal cells from ovariectomized rats were separated and cultivated in the condition of osteoinductive medium or liquid medium for 15 days. Low- (1 μg/mL), medium- (10 μg/mL) and high- (100 μg/mL) dose EFs were administrated correspondingly. Alkaline phosphatase (ALP) staining, ALP activity determination, oil red O staining and realtime polymerese chain reaction (RT-PCR) were used to determine the effect of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats. Moreover, in order to explore the mechanism of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats, Dickkopf-related protein 1 (DKK1) was used in the medium group. Enzymelinked immunosorbent assay (ELISA) and RT-PCR were used to determine mRNA levels of β-catenin, low density lipoprotein receptor-related protein 5 (LRP5) and T cell factor (TCF) protein, known as wnt/β-catenin signal pathway related factors.ResultsEFs increased mRNA expression levels of ALP and early osteoblast differentiation factors, such as runt-related transcription factor 2 (Runx2), osteocalcin and collagen I, and decreased mRNA expression levels of fat generation factors, such as peroxisome proliferator activated receptor gamma 2 (PPARγ-2) and CCAAT enhancer-binding protein-α (C/EBPα) in a dose-dependent manner. While osteoblast differentiation factors were down-regulated, fat generation factors were up-regulated when DKK1 was applied. Also EFs up-regulated mRNA expression levels of β-catenin, LRP5 and TCF protein which could be blocked by DKK1.ConclusionEFs regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats by activating wnt/β-catenin signal pathway, which may be an important molecular mechanism of EFs on treating postmenopausal osteoporosis.
Calcified Tissue International | 2011
Chengliang Wu; Hongting Jin; Qiang Mao; Nanze Yu; Jonathan D. Holz; Letian Shan; Hui Liu; Luwei Xiao
The key to treating steroid-induced necrosis of femoral heads (SINFH) is early diagnosis. Dramatic improvements in diagnosis could be made if the pathogenesis of SINFH was more fully understood; however, the underlying mechanism of this disease is currently unknown. To explore the potential mechanism of SINFH, we performed gene array analysis on a rat model of the disease and compare the expression profile with that of normal rats. A quantitative RT-PCR and immunohistochemistry (IHC) assays were used to confirm the microarray results. Compared to the control group, 190 genes in the experimental group were differentially expressed, with 52 up-regulated and 138 down-regulated. Of these genes, 102 are known (deposited in GenBank), while 88 of them are unknown. The known genes can be divided into several families according to their biological functions, such as oxidative stress, apoptosis, signal transduction, angiogenesis, extracellular matrix, lipid metabolism, and transcription related genes. The results of quantitative RT-PCR and IHC were consistent with gene chip results. Our findings indicate that many genes involved in diverse signaling pathways were differentially expressed between SINFH rats and normal rats. Furthermore, our findings suggest that the development of SINFH is a complicated and dynamic process affected by multiple factors and signaling pathways and regulated by various genes.
Stem Cells International | 2016
Hongting Jin; Taotao Xu; Qiqing Chen; Chengliang Wu; Pinger Wang; Qiang Mao; Shanxing Zhang; Jiayi Shen; Peijian Tong
This study aimed to investigate if autologous bone marrow mesenchymal stem cells (MSCs) could treat osteonecrosis of the femoral head (ONFH) and what the fate and distribution of the cells are in dogs. Twelve Beagle dogs were randomly divided into two groups: MSCs group and SHAM operated group. After three weeks, dogs in MSCs group and SHAM operated group were intra-arterially injected with autologous MSCs and 0.9% normal saline, respectively. Eight weeks after treatment, the necrotic volume of the femoral heads was significantly reduced in MSCs group. Moreover, the trabecular bone volume was increased and the empty lacunae rate was decreased in MSCs group. In addition, the BrdU-positive MSCs were unevenly distributed in femoral heads and various vital organs. But no obvious abnormalities were observed. Furthermore, most of BrdU-positive MSCs in necrotic region expressed osteocalcin in MSCs group and a few expressed peroxisome proliferator-activated receptor-γ (PPAR-γ). Taken together, these data indicated that intra-arterially infused MSCs could migrate into the necrotic field of femoral heads and differentiate into osteoblasts, thus improving the necrosis of femoral heads. It suggests that intra-arterial infusion of autologous MSCs might be a feasible and relatively safe method for the treatment of femoral head necrosis.
Chinese Journal of Integrative Medicine | 2012
Chengliang Wu; Qiang Mao; Hongting Jin; Luwei Xiao; Peijian Tong
ObjectiveTo observe the regulation of Youguiyin (YGY, 右归饮) on the gene expression profile of the rat with steroid-induced femoral head necrosis (sFHN), for the sake of investigating its molecular mechanism of sFHN prevention and treatment.MethodsAll the 30 rats were randomly divided into three groups, the normal control group (A), the model control group (B), and the YGY treated group (C), 10 in each group. After rats in Groups B and C were being made into FHN models with steroid injection, they received a daily intragastric administration of saline and YGY respectively in equal volume for a total of 6 weeks, while to the unmodeled normal rats in Group A, saline was administered instead. The rats were sacrificed at the terminal of administration; their mRNA from femoral head tissue was extracted and prepared to cDNA probe through inverse transcription for detecting gene expression profile by microarray, outcomes of which was passing fluorescence quantitative PCR verification, and the differential expressed genes were analyzed adopting gene ontology (GO) method.ResultsCompared with Group A, the numbers of differential genes found in Groups B and C were 190 and 92, respectively, but the changing trend in the two groups was opposite, mainly manifested as down-regulating in Group B/Group A (GB/GA) and up-regulating in Group C/Group B (GC/GB). The analysis showed that these differential genes were mainly assigned to cell apoptosis, signal transduction, metabolism, cell proliferation and differentiation, cell cycle, blood coagulation, antioxidant activity, etc.ConclusionssFHN was regulated by various genes; the regulation of YGY on expressions of these genes and the intra/extra-cellular signaling processes was possibly the molecular mechanism of YGY for preventing/treating sFHN. This study gave an explanation to the effectiveness of Chinese medicine in preventing/treating FHN from aspects of gene expression and enriched the Chinese medicine theory of “Kidney (Shen) governing bones”.
Life Sciences | 2018
Jun Ying; Pinger Wang; Shanxing Zhang; Taotao Xu; Lei Zhang; Rui Dong; Shibing Xu; Peijian Tong; Chengliang Wu; Hongting Jin
Aims: Transforming growth factor‐&bgr;1 (TGF‐&bgr;1) is a chondrogenic factor and has been reported to be able to enhance chondrocyte differentiation from bone marrow mesenchymal stem cells (BMSCs). Here we investigate the molecular mechanism through which TGF‐&bgr;1 chronically promotes the repair of cartilage defect and inhibit chondrocyte hypertrophy. Main methods: Animal models of full thickness cartilage defects were divided into three groups: model group, BMSCs group (treated with BMSCs/calcium alginate gel) and BMSCs + TGF‐&bgr;1 group (treated with Lentivirus‐TGF‐&bgr;1‐EGFP transduced BMSCs/calcium alginate gel). 4 and 8 weeks after treatment, macroscopic observation, histopathological study and quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR) were done to analyze phenotypes of the animals. BMSCs were transduced with Lentivirus‐TGF‐&bgr;1‐EGFP in vitro and Western blot analysis was performed. Key findings: We found that TGF‐&bgr;1‐expressiing BMSCs improved the repair of the cartilage defect. The impaired cartilage contained higher amount of GAG and type II collagen and was integrated to the surrounding normal cartilage and higher content of GAG and type II collagen. The major events include increased expression of type II collagen following Smad2/3 phosphorylation, and inhibition of cartilage hypertrophy by increasing Yes‐associated protein‐1 (YAP‐1) and inhibiting Runx2 and Col10 after the completion of chondrogenic differentiation. Significance: We conclude that TGF‐&bgr;1 is beneficial to chondrogenic differentiation of BMSCs via canonical Smad pathway to promote early‐repairing of cartilage defect. Furthermore, TGF‐&bgr;1 inhibits chondrocyte hypertrophy by decreasing hypertrophy marker gene expression via Hippo signaling. Long‐term rational use of TGF‐&bgr;1 may be an alternative approach in clinic for cartilage repair and regeneration.
Molecular Medicine Reports | 2017
Taotao Xu; Hongting Jin; Yangjun Lao; Pinger Wang; Shanxing Zhang; Hongfeng Ruan; Qiang Mao; Li Zhou; Luwei Xiao; Peijian Tong; Chengliang Wu
Long-term administration of glucocorticoid hormones is considered one of predominant pathological factors inducing osteonecrosis of the femoral head (ONFH) development and progression, in which reduction of blood supply leads to a progressive bone loss and impairment of bone structure in the majority of cases. In a non-hematopoietic system, erythropoietin (EPO) can stimulate angiogenesis and bone regeneration. However, the specific mechanism underlying the role of EPO in ONFH remains to be elucidated. Therefore, the purpose of this study was to determine the effect of EPO on the prevention of bone loss in ONFH. Male C57BL/6J mice 3 months old were divided into two groups: EPO group and control groups. ONFH was established by the administration prednisolone (PDS, 100 mg/kg) with co-treatment of lipopolysaccharide (LPS, 1 mg/kg). ONFH mice received recombinant mouse EPO (500 U/kg/day) or saline intramuscularly. The mice were sacrificed at 2, 4, 6 and 8 weeks following the initiation of treatment. Alterations in the general architecture and histomorphology of the right femoral head were determined by hematoxylin and eosin staining and micro computed tomography (micro-CT). The expression of runt-related transcription factor 2 (Runx2), osteocalcin, vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule (CD31) in the femoral head was tested by immunohistochemistry. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect apoptosis in femoral heads. Micro-CT data revealed that EPO significantly improved bone volume/total volume and bone mineral density following 6 and 8 weeks of treatment. Histological analysis further demonstrated that EPO treatment improved the arrangement of trabeculae, thinning of trabeculae and other fractures in femoral heads, especially following 6 and 8 weeks of treatment. Immunohistochemical analysis suggested that EPO treatment up-regulated the expressions of Runx2, osteocalcin, VEGF and CD31 at 4 and 8 weeks. The TUNEL apoptosis assay suggested that EPO intervention reduced apoptosis in avascular ONFH. Therefore, EPO prevents bone loss in ONFH in mice through enhancing Runx2-mediated osteogenesis, VEGF-mediated angiogenesis and inhibition of cell apoptosis.
China journal of orthopaedics and traumatology | 2015
Tao-tao Xu; Fei Liao; Hongting Jin; Luwei Xiao; Chengliang Wu
Molecular BioSystems | 2014
Letian Shan; Fei Liao; Hongting Jin; Fusheng Ye; Peijian Tong; Luwei Xiao; Jia Zhou; Chengliang Wu
China journal of orthopaedics and traumatology | 2013
Jian Xie; Letian Shan; Chengliang Wu