Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengliang Zhang is active.

Publication


Featured researches published by Chengliang Zhang.


International Immunopharmacology | 2013

Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by inducing immune tolerance

Chengliang Zhang; Ling Gui; Yanjiao Xu; Tao Wu; Dong Liu

Andrographolide, an active component in traditional anti-diabetic herbal plants, is a diterpenoid lactone isolated from Andrographis paniculata because of its potent anti-inflammatory and hypoglycemic effects. However, the effect of andrographolide on the development of diabetes in autoimmune non-obese diabetic (NOD) mice remains unknown. This study aimed to investigate the protective effects of andrographolide on the development of autoimmune diabetes and clarify the underlying mechanism. NOD mice were randomly divided into four groups and administered with water and andrographolide at 50, 100, and 150mg/kg body weight for four weeks. ICR mice were also selected as the control group. Oral glucose tolerance and histopathological insulitis were examined. Th1/Th2/Th17 cytokine secretion was determined by ELISA. The transcriptional profiles of T-bet, GATA3, and RORγt in the pancreatic lymphatic node samples derived from the NOD mice were detected by RT-PCR. After four weeks of oral supplementation, andrographolide significantly inhibited insulitis, delayed the onset, and suppressed the development of diabetes in 30-week-old NOD mice in a dose dependent manner. This protective status was correlated with a substantially decreased production of interferon (IFN)-γ and interleukin (IL)-2, increased IL-10 and transforming growth factor (TGF)-β, and a reduced IL-17. Andrographolide also increased GATA3 mRNA expression but decreased T-bet and RORγt mRNA expressions. Our results suggested that andrographolide prevented type 1 diabetes by maintaining Th1/Th2/Th17 homeostasis.


Evidence-based Complementary and Alternative Medicine | 2015

Protective Effect of Calculus Bovis Sativus on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice.

Xiping Li; Yanjiao Xu; Chengliang Zhang; Li Deng; Mujun Chang; Zaoqin Yu; Dong Liu

Calculus Bovis Sativus (CBS) is a commonly used traditional Chinese medicine, which has been reported to exhibit antispasmodic, fever-reducing, anti-inflammatory, and gallbladder-repairing effects. The present study aims to investigate the protective effect of CBS on dextran sulphate sodium- (DSS-) induced ulcerative colitis (UC) in mice. C57BL/6 male mice were exposed to 5% DSS in drinking water. CBS was given orally at 50 and 150 mg/kg once per day for 7 days. Body weight, disease activity index (DAI), colon length, colonic myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and nitric oxide (NO) levels were measured. Administration of CBS significantly reserved these changes, decreased the MPO activity and MDA and NO level, and increased the SOD activity in the colon tissue. Histological observation suggested that CBS alleviated edema, mucosal damage, and inflammatory cells infiltration induced by DSS in the colon. Moreover, CBS significantly downregulated the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1β and IL-6 in the colon tissue. Our data suggested that CBS exerted protective effect on DSS-induced UC partially through the antioxidant and anti-inflammatory activities.


Life Sciences | 2013

Evaluation of intestinal absorption of amtolmetin guacyl in rats: breast cancer resistant protein as a primary barrier of oral bioavailability.

Zhihui Rong; Yanjiao Xu; Chengliang Zhang; Daochun Xiang; Xiping Li; Dong Liu

AIMS The purpose of the present study was to investigate the role of efflux transporters on the intestinal absorption of amtolmetin guacyl (MED-15). MAIN METHODS The effects of P-glycoprotein (P-gp), multiple resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on intestinal absorption amount of MED-5 (tolmetin-glycine amide derivative), the metabolite formed from MED-15 in the intestinal epithelial cells were studied in the in vitro everted gut sac experiments. Moreover, the in situ single-pass intestine perfusion was adopted to clarify the role of efflux transporters in excreting MED-5 in knockout mice. The plasma concentration of MED-5 and tolmetin, the metabolite formed from MED-5 was determined in Bcrp1 knockout mice and wild-type mice. KEY FINDINGS BCRP inhibitor Ko143 (50 μM and 100 μM) significantly increased the intestinal absorption amount in jejunum, ileum and colon (p<0.05). However, no effect was observed in the presence of P-gp inhibitor verapamil and MRP2 inhibitor MK571 in each intestinal segment. Furthermore, the plasma concentration MED-5 and tolmetin, metabolites of MED-15, increased 2-fold and 4-fold, respectively, in Bcrp1 knockout mice compared with wild-type mice after the single-pass perfusion of small intestine with MED-15. SIGNIFICANCE It may be concluded that BCRP plays an important role in the intestinal efflux of MED-5 and limits the bioavailability after oral administration of MED-15.


Life Sciences | 2014

Beneficial effect of Calculus Bovis Sativus on 17α-ethynylestradiol-induced cholestasis in the rat.

Dong Liu; Tao Wu; Chengliang Zhang; Yanjiao Xu; Mujun Chang; Xiping Li; Hongjiao Cai

AIMS Calculus Bovis Sativus (CBS) shares similar pharmacological effects with Calculus Bovis like relieving hepatobiliary diseases. This study aims to investigate the effect and mechanism of CBS on 17α-ethynylestradiol (EE)-induced cholestasis in the rat. MAIN METHODS CBS (50 and 150 mg/kg per day) was intragastrically (i. g.) given to experimental rats for 5 consecutive days in coadministration with EE. The levels of serum biomarkers, hepatic malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined by biochemical methods. The bile flow in 2h was measured. The histopathology of the liver tissue was evaluated. The expression of transporter was studied by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. KEY FINDINGS CBS treatment significantly prevented EE-induced increases in serum levels of biomarkers. Decreased bile flow by EE was restored with CBS treatment. The tissue lesions were also relieved with CBS treatment. Western blot studies indicated that EE significantly decreased the protein expression of multidrug resistance-associated protein 2 (Mrp2) and breast cancer resistance protein (Bcrp), but notably increased P-glycoprotein (P-gp) protein, compared with the control group. CBS treatment significantly increased the protein expression of P-gp, Mrp2 and Bcrp compared with the EE group. RT-qPCR studies indicated that EE down-regulated Bcrp at transcriptional level. CBS up-regulated the mRNA expression of P-gp, Mrp2 and Bcrp compared with the EE group. SIGNIFICANCE The present study indicated that CBS exerted a beneficial effect on EE-induced cholestasis in the rat, which may result from its induction of P-gp, Mrp2 and Bcrp expression.


PLOS ONE | 2014

In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2.

Chengliang Zhang; Yanjiao Xu; Qiaoni Zhong; Xiping Li; Ping Gao; Chengyang Feng; Qian Chu; Yuan Chen; Dong Liu

Two major forms of human carboxylesterase (CES), CES1A and CES2, dominate the pharmacokinetics of most prodrugs such as imidapril and irinotecan (CPT-11). Excipients, largely used as insert vehicles in formulation, have been recently reported to affect drug enzyme activity. The influence of excipients on the activity of CES remains undefined. In this study, the inhibitory effects of 25 excipients on the activities of CES1A1 and CES2 were evaluated. Imidapril and CPT-11 were used as substrates and cultured with liver microsomes in vitro. Imidapril hydrolase activities of recombinant CES1A1 and human liver microsomes (HLM) were strongly inhibited by sodium lauryl sulphate (SLS) and polyoxyl 40 hydrogenated castor oil (RH40) [Inhibition constant (Ki) = 0.04±0.01 μg/ml and 0.20±0.09 μg/ml for CES1A1, and 0.12±0.03 μg/ml and 0.76±0.33 μg/ml, respectively, for HLM]. The enzyme hydrolase activity of recombinant CES2 was substantially inhibited by Tween 20 and polyoxyl 35 castor oil (EL35) (Ki = 0.93±0.36 μg/ml and 4.4±1.24 μg/ml, respectively). Thus, these results demonstrate that surfactants such as SLS, RH40, Tween 20 and EL35 may attenuate the CES activity; such inhibition should be taken into consideration during drug administration.


PLOS ONE | 2017

Efficacy and Safety of Everolimus for Maintenance Immunosuppression of Kidney Transplantation: A Meta-Analysis of Randomized Controlled Trials

Jinyu Liu; Dong Liu; Juan Li; Lan Zhu; Chengliang Zhang; Kai Lei; Qiling Xu; Ruxu You

Background Conversion to everolimus is often used in kidney transplantation to overcome calcineurin inhibitor (CNI) nephrotoxicity but there is conflicting evidence for this approach. Objectives To investigate the benefits and harm from randomized clinical trials (RCTs) involving the conversion from CNI to everolimus after kidney transplantation. Methods Databases were searched up to March 2016. Two reviewers independently assessed trials for eligibility and quality, and extracted data. Results are expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). Results Eleven RCTs, with a total of 1,633 patients, met the final inclusion criteria. Patients converted to everolimus had improved renal function at 1 year posttransplant with an estimated glomerular filtration rate (eGFR) of 5.36 mL/min per 1.73 m2 greater than patients remaining on CNI (p = 0.0005) and the longer-term results (> 1 year) of renal function was identical to that of 1 year. There was not a substantial difference in graft loss, mortality, and the occurrence of adverse events (AEs) or serious AEs. However, the risks of acute rejection and trial termination due to AEs with everolimus are respectively 1.82 and 2.63 times greater than patients staying on CNI at 1 year posttransplant (p = 0.02, p = 0.03, respectively). Further, those patients who converted to everolimus had a substantially greater risk of anemia, hyperlipidemia, hypercholesterolemia, hypokalemia, proteinuria, stomatitis, mouth ulceration, and acne. Conclusions Conversion from CNI to everolimus after kidney transplantation is associated with improved renal function in the first 5 years posttransplant but increases the risk of acute rejection at 1 year posttransplant and may not be well endured.


Oncotarget | 2017

Stem cells in cancer therapy: opportunities and challenges

Chengliang Zhang; Ting Huang; Bi-Li Wu; Wen-Xi He; Dong Liu

Metastatic cancer cells generally cannot be eradicated using traditional surgical or chemoradiotherapeutic strategies, and disease recurrence is extremely common following treatment. On the other hand, therapies employing stem cells are showing increasing promise in the treatment of cancer. Stem cells can function as novel delivery platforms by homing to and targeting both primary and metastatic tumor foci. Stem cells engineered to stably express various cytotoxic agents decrease tumor volumes and extend survival in preclinical animal models. They have also been employed as virus and nanoparticle carriers to enhance primary therapeutic efficacies and relieve treatment side effects. Additionally, stem cells can be applied in regenerative medicine, immunotherapy, cancer stem cell-targeted therapy, and anticancer drug screening applications. However, while using stem cells to treat human cancers appears technically feasible, challenges such as treatment durability and tumorigenesis necessitate further study to improve therapeutic performance and applicability. This review focuses on recent progress toward stem cell-based cancer treatments, and summarizes treatment advantages, opportunities, and shortcomings, potentially helping to refine future trials and facilitate the translation from experimental to clinical studies.


Drug Research | 2013

Effects of Andrographolide on the Pharmacokinetics of Aminophylline and Doxofylline in Rats

Xiping Li; Chengliang Zhang; Ping Gao; Junbin Gao; Dong Liu

Andrographolide, which is one of the main pharmaceutical ingredients in traditional Chinese medicine Andrographis paniculata, can clear heat, detoxify human body, cool blood and reduce swelling, etc. Respiratory tract infectious diseases have been treated with the combination of andrographolide and theophyllines clinically. As andrographolide inhibits the CYP1A2 activity in vitro, it potentially interacts with theophyllines that are mainly metabolized by CYP1A2. Therefore, we herein studied the effects of andrographolide on the pharmacokinetics of aminophylline and doxofylline in rats. The blood drug concentrations of aminophylline, doxofylline and its metabolite theophylline were determined by HPLC. The theophylline AUC(0-t) was significantly elevated confronting the combination of andrographolide and aminophylline compared to that of the control group (P<0.05). Meanwhile, when only aminophylline was used, the theophylline clearance rate was significantly higher than those in the case of combination (P<0.05). The pharmacokinetics parameters of doxofylline and its metabolite theophylline in the individual administration group showed no significantly different from that combined with andrographolide. The results suggest that andrographolide and aminophylline should not be simultaneously administered because the former may raise the risks of side effects by inhibiting the clearance of the latter. In contrast, it is more secure to combine doxofylline with andrographolide owing to the almost intact pharmacokinetics.


Journal of Huazhong University of Science and Technology-medical Sciences | 2012

Dexamethasone Regulates Differential Expression of Carboxylesterase 1 and Carboxylesterase 2 through Activation of Nuclear Receptors

Chengliang Zhang; Ping Gao; Weifeng Yin; Yanjiao Xu; Daochun Xiang; Dong Liu

SummaryCarboxylesterases (CESs) play important roles in the metabolism of endogenous and foreign compounds in physiological and pharmacological responses. The aim of this study was to investigate the effect of dexamethasone at different doses on the expression of CES1 and CES2. Imidapril and irinotecan hydrochloride (CPT-11) were used as special substrates for CES1 and CES2, respectively. Rat hepatocytes were cultured and treated with different concentrations of dexamethasone. The hydrolytic activity of CES1 and CES2 was tested by incubation experiment and their expression was quantitated by real-time PCR. A pharmacokinetic study was conducted in SD rats to further evaluate the effect of dexamethasone on CESs activity in vivo. Western blotting was performed to investigate the regulatory mechanism related to pregnane X receptor (PXR) and glucocorticoid receptor (GR). The results showed that exposure of cultured rat hepatocytes to nanomolar dexamethasone inhibited the imidapril hydrolase activity, which was slightly elevated by micromolar dexamethasone. For CES2, CPT-11 hydrolase activity was induced only when dexamethasone reached micromolar levels. The real-time PCR demonstrated that CES1 mRNA was markedly decreased by nanomolar dexamethasone and increased by micromolar dexamethasone, whereas CES2 mRNA was significantly increased by micromolar dexamethasone. The results of a complementary animal study showed that the concurrent administration of dexamethasone significantly increased the plasma concentration of the metabolite of imidapril while the ratio of CPT-11 to its metabolite SN-38 was significantly decreased. PXR protein was gradually increased by serial concentrations of dexamethasone. However, only nanomolar dexamethasone elevated the level of GR protein. The different concentrations of dexamethasone required suggested that suppression of CES1 may be mediated by GR whereas the induction of CES2 may result from the role of PXR. It was concluded that dexamethasone at different concentrations can differentially regulate CES1 and CES2.Carboxylesterases (CESs) play important roles in the metabolism of endogenous and foreign compounds in physiological and pharmacological responses. The aim of this study was to investigate the effect of dexamethasone at different doses on the expression of CES1 and CES2. Imidapril and irinotecan hydrochloride (CPT-11) were used as special substrates for CES1 and CES2, respectively. Rat hepatocytes were cultured and treated with different concentrations of dexamethasone. The hydrolytic activity of CES1 and CES2 was tested by incubation experiment and their expression was quantitated by real-time PCR. A pharmacokinetic study was conducted in SD rats to further evaluate the effect of dexamethasone on CESs activity in vivo. Western blotting was performed to investigate the regulatory mechanism related to pregnane X receptor (PXR) and glucocorticoid receptor (GR). The results showed that exposure of cultured rat hepatocytes to nanomolar dexamethasone inhibited the imidapril hydrolase activity, which was slightly elevated by micromolar dexamethasone. For CES2, CPT-11 hydrolase activity was induced only when dexamethasone reached micromolar levels. The real-time PCR demonstrated that CES1 mRNA was markedly decreased by nanomolar dexamethasone and increased by micromolar dexamethasone, whereas CES2 mRNA was significantly increased by micromolar dexamethasone. The results of a complementary animal study showed that the concurrent administration of dexamethasone significantly increased the plasma concentration of the metabolite of imidapril while the ratio of CPT-11 to its metabolite SN-38 was significantly decreased. PXR protein was gradually increased by serial concentrations of dexamethasone. However, only nanomolar dexamethasone elevated the level of GR protein. The different concentrations of dexamethasone required suggested that suppression of CES1 may be mediated by GR whereas the induction of CES2 may result from the role of PXR. It was concluded that dexamethasone at different concentrations can differentially regulate CES1 and CES2.


PLOS ONE | 2014

Chronopharmacodynamics and chronopharmacokinetics of pethidine in mice.

Chengliang Zhang; Zaoqin Yu; Xiping Li; Yanjiao Xu; Dong Liu

Background Many studies have demonstrated that the pharmacokinetics and pharmacodynamics of analgesic drugs vary according to the circadian time of drug administration. This study aims at determining whether the analgesic effect and pharmacokinetics of pethidine in male BALB/c mice are influenced by administration time. Methods A hot-plate test was used to evaluate the analgesic effect after pethidine (20 mg/kg) or saline injection at different dosing times. Mouse blood samples were collected at different intervals after dosing at 9:00 am and 9:00 pm, and were determined via liquid chromatography–tandem mass spectrometry (LC–MS/MS). Results A significant 24-h rhythm was observed in the latency to thermal response at 30 min after dosing, with the peak during the dark phase and the nadir during the light phase. Tolerance to analgesic effect was produced after chronic pethidine injection at 9:00 am or 9:00 pm, and the recovery from tolerance was faster during the dark phase. The peak concentration (Cmax) and area under the concentration–time curve (AUC) of pethidine and its metabolite norpethidine were significantly higher during the dark phase than during the light phase, but the total serum clearance (CL/F) exhibited the opposite trend. The rhythm of drug plasma concentration was positively correlated with the analgesic effect. Conclusion These results suggest that the pharmacodynamics and pharmacokinetics of pethidine in mice vary significantly according to the dosing time, which implies that the time of administration should be considered in the rational clinical use of pethidine to maximise analgesia and minimise the adverse effects.

Collaboration


Dive into the Chengliang Zhang's collaboration.

Top Co-Authors

Avatar

Dong Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yanjiao Xu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiping Li

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wen-Xi He

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dong Xiang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kai Lei

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jinyu Yang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mujun Chang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tao Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yanan Liu

Huazhong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge