Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengshu Wang is active.

Publication


Featured researches published by Chengshu Wang.


PLOS Genetics | 2011

Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

Qiang Gao; Kai Jin; Sheng-Hua Ying; Yongjun Zhang; Guohua Xiao; Yanfang Shang; Zhibing Duan; Xiao Xiao Hu; Xue-Qin Xie; Gang Zhou; Guoxiong Peng; Zhibing Luo; Wei Huang; Bing Wang; Weiguo Fang; Sibao Wang; Yi Zhong; Li-Jun Ma; Raymond J. St. Leger; Guoping Zhao; Yan Pei; Ming-Guang Feng; Yuxian Xia; Chengshu Wang

Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.


Cell | 2006

Dual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence Factors

Marie Gottar; Vanessa Gobert; Alexey A. Matskevich; Jean-Marc Reichhart; Chengshu Wang; Tariq M. Butt; Marcia Belvin; Jules A. Hoffmann; Dominique Ferrandon

The Drosophila immune system discriminates between various types of infections and activates appropriate signal transduction pathways to combat the invading microorganisms. The Toll pathway is required for the host response against fungal and most Gram-positive bacterial infections. The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and GNBP1 that cooperate to detect the presence of infections in the host. Here, we report that GNBP3 is a pattern recognition receptor that is required for the detection of fungal cell wall components. Strikingly, we find that there is a second, parallel pathway acting jointly with GNBP3. The Drosophila Persephone protease activates the Toll pathway when proteolytically matured by the secreted fungal virulence factor PR1. Thus, the detection of fungal infections in Drosophila relies both on the recognition of invariant microbial patterns and on monitoring the effects of virulence factors on the host.


Scientific Reports | 2012

Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana

Guohua Xiao; Sheng-Hua Ying; Peng Zheng; Zheng-Liang Wang; Siwei Zhang; Xue-Qin Xie; Yanfang Shang; Raymond J. St. Leger; Guoping Zhao; Chengshu Wang; Ming-Guang Feng

The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide.


Genome Biology | 2011

Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine

Peng Zheng; Yongliang Xia; Guohua Xiao; Chenghui Xiong; Xiao Hu; Siwei Zhang; Huajun Zheng; Yin Huang; Yan Zhou; Wang S; Guoping Zhao; Xingzhong Liu; Raymond J. St. Leger; Chengshu Wang

BackgroundSpecies in the ascomycete fungal genus Cordyceps have been proposed to be the teleomorphs of Metarhizium species. The latter have been widely used as insect biocontrol agents. Cordyceps species are highly prized for use in traditional Chinese medicines, but the genes responsible for biosynthesis of bioactive components, insect pathogenicity and the control of sexuality and fruiting have not been determined.ResultsHere, we report the genome sequence of the type species Cordyceps militaris. Phylogenomic analysis suggests that different species in the Cordyceps/Metarhizium genera have evolved into insect pathogens independently of each other, and that their similar large secretomes and gene family expansions are due to convergent evolution. However, relative to other fungi, including Metarhizium spp., many protein families are reduced in C. militaris, which suggests a more restricted ecology. Consistent with its long track record of safe usage as a medicine, the Cordyceps genome does not contain genes for known human mycotoxins. We establish that C. militaris is sexually heterothallic but, very unusually, fruiting can occur without an opposite mating-type partner. Transcriptional profiling indicates that fruiting involves induction of the Zn2Cys6-type transcription factors and MAPK pathway; unlike other fungi, however, the PKA pathway is not activated.ConclusionsThe data offer a better understanding of Cordyceps biology and will facilitate the exploitation of medicinal compounds produced by the fungus.


Eukaryotic Cell | 2007

The MAD1 Adhesin of Metarhizium anisopliae Links Adhesion with Blastospore Production and Virulence to Insects, and the MAD2 Adhesin Enables Attachment to Plants

Chengshu Wang; Raymond J. St. Leger

ABSTRACT Metarhizium anisopliae is a fungus of considerable metabolic and ecological versatility, being a potent insect pathogen that can also colonize plant roots. The mechanistic details of these interactions are unresolved. We provide evidence that M. anisopliae adheres to insects and plants using two different proteins, MAD1 and MAD2, that are differentially induced in insect hemolymph and plant root exudates, respectively, and produce regional localization of adhesive conidial surfaces. Expression of Mad1 in Saccharomyces cerevisiae allowed this yeast to adhere to insect cuticle. Expression of Mad2 caused yeast cells to adhere to a plant surface. Our study demonstrated that as well as allowing adhesion to insects, MAD1 at the surface of M. anisopliae conidia or blastospores is required to orientate the cytoskeleton and stimulate the expression of genes involved in the cell cycle. Consequently, the disruption of Mad1 in M. anisopliae delayed germination, suppressed blastospore formation, and greatly reduced virulence to caterpillars. The disruption of Mad2 blocked the adhesion of M. anisopliae to plant epidermis but had no effects on fungal differentiation and entomopathogenicity. Thus, regulation, localization, and specificity control the functional distinction between Mad1 and Mad2 and enable M. anisopliae cells to adapt their adhesive properties to different habitats.


Nature Biotechnology | 2007

A scorpion neurotoxin increases the potency of a fungal insecticide

Chengshu Wang; Raymond J. St. Leger

The low virulence of the insecticidal fungus Metarhizium anisopliae has stymied its widespread use in controlling insect pests. We show that high-level expression of an insect-specific neurotoxin from the scorpion Androctonus australis in hemolymph by M. anisopliae increases fungal toxicity 22-fold against tobacco hornworm (Manduca sexta) caterpillars and ninefold against adult yellow fever mosquitoes (Aedes aegypti) without compromising host specificity. Prelethal effects include reduced mobility and feeding of the insects targeted.


Applied Microbiology and Biotechnology | 2010

Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests

Raymond J. St. Leger; Chengshu Wang

Molecular biology methods have elucidated pathogenic processes in several fungal biocontrol agents including two of the most commonly applied entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. In this review, we describe how a combination of molecular techniques has: (1) identified and characterized genes involved in infection; (2) manipulated the genes of the pathogen to improve biocontrol performance; and (3) allowed expression of a neurotoxin from the scorpion Androctonus australis. The complete sequencing of four exemplar species of entomopathogenic fungi including B. bassiana and M. anisopliae will be completed in 2010. Coverage of these genomes will help determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. Such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies to be used for different ecosystems and avoid the possibility of the host developing resistance.


Journal of Biological Chemistry | 2007

The Metarhizium anisopliae Perilipin Homolog MPL1 Regulates Lipid Metabolism, Appressorial Turgor Pressure, and Virulence

Chengshu Wang; Raymond J. St. Leger

Cells store lipids in droplets. Studies addressing how mammals control lipid-based energy homeostasis have implicated proteins of the PAT domain family, such as perilipin that surrounds the lipid droplets. Perilipin knock-out mice are lean and resistant to obesity. Factors that mediate lipid storage in fungi are still unknown. Here we describe a gene (Mpl1) in the economically important insect fungal pathogen Metarhizium anisopliae that has structural similarities to mammalian perilipins. Consistent with a role in lipid storage, Mpl1 is predominantly expressed when M. anisopliae is engaged in accumulating lipids and ectopically expressed green fluorescent protein-tagged MPL1 (Metarhizium perilipin-like protein) localized to lipid droplets. Mutant M. anisopliae lacking MPL1 have thinner hyphae, fewer lipid droplets, particularly in appressoria (specialized infection structures at the end of germ tubes), and a decrease in total lipids. Mpl1 therefore acts in a perilipin-like manner suggesting an evolutionary conserved function in lipid metabolism. However, reflecting general differences between animal and fungal lineages, these proteins have also been selected to cope with different tasks. Thus, turgor generation by ΔMpl1 appressoria is dramatically reduced indicating that lipid droplets are required for solute accumulation. This was linked with the reduced ability to breach insect cuticle so that Mpl1 is a pathogenicity determinant. Blast searches of fungal genomes revealed that perilipin homologs are found only in pezizomycotinal ascomycetes and occur as single copy genes. Expression of Mpl1 in yeast cells, a fungus that lacks a perilipin-like gene, blocked their ability to mobilize lipids during starvation conditions.


Eukaryotic Cell | 2005

Developmental and Transcriptional Responses to Host and Nonhost Cuticles by the Specific Locust Pathogen Metarhizium anisopliae var. acridum

Chengshu Wang; Raymond J. St. Leger

ABSTRACT Transcript patterns elicited in response to hosts can reveal how fungi recognize suitable hosts and the mechanisms involved in pathogenicity. These patterns could be fashioned by recognition of host-specific topographical features or by chemical components displayed or released by the host. We investigated this in the specific locust pathogen Metarhizium anisopliae var. acridum. Only host (Schistocerca gregaria) cuticle stimulated the full developmental program of germination and differentiation of infection structures (appressoria). Cuticle from beetles (Leptinotarsa decimlineata) repressed germination while cuticle from hemipteran bugs (Magicicada septendecim) allowed germination but only very low levels of differentiation, indicating that the ability to cause disease can be blocked at different stages. Using organic solvents to extract insects we identified a polar fraction from locusts that allowed appressorial formation against a flat plastic (hydrophobic) surface. Microarrays comprising 1,730 expressed sequence tags were used to determine if this extract elicits different transcriptional programs than whole locust cuticle or nonhost extracts. Of 483 differentially regulated genes, 97% were upregulated. These included genes involved in metabolism, utilization of host cuticle components, cell survival and detoxification, and signal transduction. Surprisingly, given the complex nature of insect epicuticle components and the specific response of M. anisopliae var. acridum to locusts, very similar transcript profiles were observed on locust and beetle extracts. However, the beetle extract cluster was enriched in genes for detoxification and redox processes, while the locust extract upregulated more genes for cell division and accumulation of cell mass. In addition, several signal transduction genes previously implicated in pathogenicity in plant pathogens were only upregulated in response to locust extract, implying similarities in the regulatory circuitry of these pathogens with very different hosts.


PLOS ONE | 2013

Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens

Guodong Liu; Lei Zhang; Xiaomin Wei; Gen Zou; Yuqi Qin; Liang Ma; Jie Li; Huajun Zheng; Wang S; Chengshu Wang; Luying Xun; Guoping Zhao; Zhihua Zhou; Yinbo Qu

Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.

Collaboration


Dive into the Chengshu Wang's collaboration.

Top Co-Authors

Avatar

Yanfang Shang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xingzhong Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuzhen Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guohua Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gen Zou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Meichun Xiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongliang Xia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhihua Zhou

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge