Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chenguo Hu is active.

Publication


Featured researches published by Chenguo Hu.


ACS Nano | 2012

Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

Longyan Yuan; Xihong Lu; Xu Xiao; Teng Zhai; Junjie Dai; Fengchao Zhang; Bin Hu; Xue Wang; Li Gong; Jian Chen; Chenguo Hu; Yexiang Tong; Jun Zhou; Zhong Lin Wang

A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management.


ACS Nano | 2013

Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self- Powered Active Tactile Sensor System

Ya Yang; Hulin Zhang; Zong-Hong Lin; Yu Sheng Zhou; Qingshen Jing; Yuanjie Su; Jin Yang; Jun Chen; Chenguo Hu; Zhong Lin Wang

We report human skin based triboelectric nanogenerators (TENG) that can either harvest biomechanical energy or be utilized as a self-powered tactile sensor system for touch pad technology. We constructed a TENG utilizing the contact/separation between an area of human skin and a polydimethylsiloxane (PDMS) film with a surface of micropyramid structures, which was attached to an ITO electrode that was grounded across a loading resistor. The fabricated TENG delivers an open-circuit voltage up to -1000 V, a short-circuit current density of 8 mA/m(2), and a power density of 500 mW/m(2) on a load of 100 MΩ, which can be used to directly drive tens of green light-emitting diodes. The working mechanism of the TENG is based on the charge transfer between the ITO electrode and ground via modulating the separation distance between the tribo-charged skin patch and PDMS film. Furthermore, the TENG has been used in designing an independently addressed matrix for tracking the location and pressure of human touch. The fabricated matrix has demonstrated its self-powered and high-resolution tactile sensing capabilities by recording the output voltage signals as a mapping figure, where the detection sensitivity of the pressure is about 0.29 ± 0.02 V/kPa and each pixel can have a size of 3 mm × 3 mm. The TENGs may have potential applications in human-machine interfacing, micro/nano-electromechanical systems, and touch pad technology.


Science Advances | 2016

Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors

Zhen Wen; Min-Hsin Yeh; Hengyu Guo; Jie Wang; Yunlong Zi; Weidong Xu; Jianan Deng; Lei Zhu; Xin Wang; Chenguo Hu; Liping Zhu; Xuhui Sun; Zhong Lin Wang

A hybridized self-powered textile for simultaneously collecting solar energy and random body motion energy was demonstrated. Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all–fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.


ACS Nano | 2016

Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator

Yunlong Zi; Hengyu Guo; Zhen Wen; Min-Hsin Yeh; Chenguo Hu; Zhong Lin Wang

Electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) are the two most powerful approaches for harvesting ambient mechanical energy, but the effectiveness of each depends on the triggering frequency. Here, after systematically comparing the performances of EMGs and TENGs under low-frequency motion (<5 Hz), we demonstrated that the output performance of EMGs is proportional to the square of the frequency, while that of TENGs is approximately in proportion to the frequency. Therefore, the TENG has a much better performance than that of the EMG at low frequency (typically 0.1-3 Hz). Importantly, the extremely small output voltage of the EMG at low frequency makes it almost inapplicable to drive any electronic unit that requires a certain threshold voltage (∼0.2-4 V), so that most of the harvested energy is wasted. In contrast, a TENG has an output voltage that is usually high enough (>10-100 V) and independent of frequency so that most of the generated power can be effectively used to power the devices. Furthermore, a TENG also has advantages of light weight, low cost, and easy scale up through advanced structure designs. All these merits verify the possible killer application of a TENG for harvesting energy at low frequency from motions such as human motions for powering small electronics and possibly ocean waves for large-scale blue energy.


Journal of Materials Chemistry | 2014

A nanogenerator for harvesting airflow energy and light energy

Hengyu Guo; Xianming He; Junwen Zhong; Qize Zhong; Qiang Leng; Chenguo Hu; Jie Chen; Li Tian; Yi Xi; Jun Zhou

Harvesting airflow energy and light energy from the ambient environment to build a self-powered system is attractive and challenging work. In this article, an airflow-induced triboelectric nanogenerator (ATNG) has been fabricated that converts wind energy to alternating electricity. The mechanism of ATNG has also been illustrated. The performance of ATNGs with different sizes was studied, from which we discovered that the ATNG (size: 1 cm × 3 cm, electrode gap: 1.5 mm) could easily collect energy from a gentle wind (5.3 m s−1). Due to the relatively high alternating electricity frequency (179.5–1220.9 Hz), an approximately stable output power (of up to 1.5 mW) was obtained from the ATNG (size: 1 cm × 3 cm, electrode gap: 0.5 mm) with 8.35 μC of charge transferred per second. Meanwhile, the fabricated wind energy harvesting device was used to drive 46 commercial green light-emitting diodes (LEDs) connected in series and charge a 220 μF capacitor to 2.5 V over 50 s. When combined with a dye-sensitized solar cell (DSC), the device can individually and simultaneously harvest wind and light energy. This shows the potential applications of this ATNG in self-powered systems.


ACS Applied Materials & Interfaces | 2014

Airflow-Induced Triboelectric Nanogenerator as a Self-Powered Sensor for Detecting Humidity and Airflow Rate

Hengyu Guo; Jie Chen; Li Tian; Qiang Leng; Yi Xi; Chenguo Hu

Humidity sensors are commonly based on the resistance change of metal oxide semiconductors, which show high sensitivity in low humidity but low sensitivity in high humidity. In this work, we design a novel humidity sensor based on the airflow-induced triboelectric nanogenerator (ATNG) that can serve as a self-powered sensor to detect humidity (especially in high humidity) and airflow rate. The output current or voltage change is investigated under different humidity (20-100% relative humidity) at fixed airflow rate and different airflow rates (15-25 L/min) at a fixed humidity. The working principle of the ATNG-based sensor is illustrated. We find that both output current and voltage can serve as a variable for detecting humidity, while only the output current can serve as a variable for determining airflow rate. Our study demonstrates an innovative approach toward detection of humidity and airflow rate with advantages of self-power, multifunction, low cost, simple fabrication, and high sensitivity.


ACS Nano | 2016

Harvesting Broad Frequency Band Blue Energy by a Triboelectric–Electromagnetic Hybrid Nanogenerator

Zhen Wen; Hengyu Guo; Yunlong Zi; Min-Hsin Yeh; Xin Wang; Jianan Deng; Jie Wang; Shengming Li; Chenguo Hu; Liping Zhu; Zhong Lin Wang

Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (<100 rpm) or motion frequencies (<2 Hz) energy, which fits the frequency range for most of the water wave based blue energy, while W-EMG is able to produce larger output at high frequencies (>10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.


Journal of Materials Chemistry | 2009

Composite-hydroxide-mediated approach as a general methodology for synthesizing nanostructures

Chenguo Hu; Yi Xi; Hong Liu; Zhong Lin Wang

The composite-hydroxide-mediated (CHM) method is based on the use of molten composite hydroxides as a solvent in chemical reactions at ∼200 °C for the synthesis of a wide range of nanostructures. This review focuses on its recent development with an emphasis on its applications for synthesizing materials of complex oxides, hydroxides, simple oxides, sulfides, selenides, tellurides, fluorides and metals. The principle of this synthesis method is introduced, and the key factors that affect the morphology and size are studied. The advantages of its low synthesis temperature, low pressure and low cost are illustrated through the synthesis of functional wires, rods, belts and other nanostructures.


ACS Nano | 2015

An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment.

Hengyu Guo; Jun Chen; Min-Hsin Yeh; Xing Fan; Zhen Wen; Zhaoling Li; Chenguo Hu; Zhong Lin Wang

Harvesting ambient mechanical energy is a green route in obtaining clean and sustainable electric energy. Here, we report an ultrarobust high-performance triboelectric nanogenerator (TENG) on the basis of charge replenishment by creatively introducing a rod rolling friction in the structure design. With a grating number of 30 and a free-standing gap of 0.5 mm, the fabricated TENG can deliver an output power of 250 mW/m(2) at a rotating rate of 1000 r/min. And it is capable of charging a 200 μF commercial capacitor to 120 V in 170 s, lighting up a G16 globe light as well as 16 spot lights connected in parallel. Moreover, the reported TENG holds an unprecedented robustness in harvesting rotational kinetic energy. After a continuous rotation of more than 14.4 million cycles, there is no observable electric output degradation. Given the superior output performance together with the unprecedented device robustness resulting from distinctive mechanism and novel structure design, the reported TENG renders an effective and sustainable technology for ambient mechanical energy harvesting. This work is a solid step in the development toward TENG-based self-sustained electronics and systems.


ACS Nano | 2014

Single-Electrode-Based Rotating Triboelectric Nanogenerator for Harvesting Energy from Tires

Hulin Zhang; Ya Yang; Xiandai Zhong; Yuanjie Su; Yusheng Zhou; Chenguo Hu; Zhong Lin Wang

Rotational energy is abundant and widely available in our living environment. Harvesting ambient rotational energy has attracted great attention. In this work, we report a single-electrode-based rotating triboelectric nanogenerator (SR-TENG) for converting rotational energy into electric energy. The unique advantage of introducing the single-electrode TENG is to overcome the difficulty in making the connection in harvesting rotational energy such as from a moving and rotating tire/wheel. The fabricated device consists of a rotary acrylic disc with polytetrafluoroethylene (PTFE) blades and an Al electrode fixed on the base. The systematical experiments and theoretical simulations indicate that the asymmetric SR-TENGs exhibit much better output performances than those of the symmetric TENGs at the same rotation rates. The asymmetric SR-TENG with seven PTFE units at the rotation rate of 800 r/min can deliver a maximal output voltage of 55 V and a corresponding output power of 30 μW on a load of 100 MΩ, which can directly light up tens of red light-emitting diodes. The SR-TENG has been utilized to harvest mechanical energy from rotational motion of a bicycle wheel. Furthermore, we demonstrated that the SR-TENG can be applied to scavenge wind energy and as a self-powered wind speed sensor with a sensitivity of about 0.83 V/(m/s). This study further expands the operation principle of a single-electrode-based TENG and many potential applications of TENGs for scavenging ambient rotational energy and as a self-powered environment monitoring sensor.

Collaboration


Dive into the Chenguo Hu's collaboration.

Top Co-Authors

Avatar

Yi Xi

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Xue Wang

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Zhong Lin Wang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Chen

Chongqing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge