Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengyu Hu is active.

Publication


Featured researches published by Chengyu Hu.


Fish & Shellfish Immunology | 2012

Overexpression of Hsp90 from grass carp (Ctenopharyngodon idella) increases thermal protection against heat stress

Chu-Xin Wu; Feng-Yun Zhao; Yuan Zhang; Yujiao Zhu; Mei-Sheng Ma; Huiling Mao; Chengyu Hu

With homologous DNA probes, we had screened a grass carp heat shock protein 90 gene (CiHsp90). The full sequence of CiHsp90 cDNA was 2793 bp, which could code a 798 amino acids peptide. The phylogenetic analysis demonstrated that CiHsp90 shared the high homology with Zebrafish Grp94. Quantitative RT-PCR analysis showed that CiHsp90 was ubiquitously expressed at lower levels in all detected tissues and up-regulated after heat shock at 34 °C or cold stress at 4 °C. To understand the function of CiHsp90 involving in thermal protection, an expression vector containing coding region cDNA was expressed in E. coli BL21 (DE3) plysS. Upon transfer from 37 °C to 42 °C, these cells that accumulated CiHsp90 peptides displayed greater thermoresistance than the control cells. While incubated at 4°C for different periods, it could also improve the cell viability. After transient transfected recombinant plasmid pcDNA3.1/CiHsp90 into mouse myeloma cell line SP2/0, we found that CiHsp90 could contribute to protecting cells against both thermal and cold extremes. On the contrary, the mutant construct ΔN-CiHsp90 (256-798aa) could abolish the protection activity both in prokaryotic cells and eukaryotic cells. Additionally, both CiHsp90 and ΔN-CiHsp90 peptides could reduce the level of citrate synthase aggregation at the high temperature.


Fish & Shellfish Immunology | 2013

IRF-1 acts as a positive regulator in the transcription of grass carp (Ctenopharyngodon idella) IFN gene.

Qinan Lai; Gang Lin; Meisheng Ma; Shenghe Huang; Wen Li; Dongming Li; Meihui Gu; Huiling Mao; Chengyu Hu

Interferon regulatory factors (IRFs) are well-known to be crucial for modulating the innate immune responses to viral infections. In the present study, the IRF-1 gene of grass carp (Ctenopharyngodon idella) (termed CiIRF-1) was cloned and characterized. The complete genomic sequence of CiIRF-1 was 3150 bp in length and comprised 9 exons and 8 introns. The CiIRF-1 promoter sequence was 558 bp in length. The largest open reading frame (ORF) of the full CiIRF-1 cDNA sequence was 870 bp, and encoded a polypeptide of 289 amino acids. The putative CiIRF-1 was characterized by a conserved N-terminal DBD (113 aa), and included a signature of five conserved tryptophan residues. Phylogenetic relationship analysis revealed that CiIRF-1 was highly homologous to the counterparts of other teleosts and mammalians. CiIRF-1 was expressed at a low constitutive level but was significantly up-regulated following stimulation with either Poly I:C or recombinant grass carp (C. idella) IFN (rCiIFN) in all 6 tested tissues, especially in spleen and gill. The recombinant CiIRF-1 was expressed in BL21 Escherichia coli, and the expressed protein was purified by affinity chromatography with the Ni-NTA His-Bind Resin. Three different fragments of promoter sequences from grass carp type I IFN (CiIFN) gene (GU139255) were amplified. These fragments included the proximal region (CiIFNP2), the distal region (CiIFNP6), and the full length of CiIFN promoter sequences (CiIFNP7). Gel mobility shift assays were employed to analyze the interaction between CiIRF-1 and CiIFN promoter sequences. The results revealed that CiIRF-1 could bind to CiIFN promoter with high affinity in vitro. Subsequently, the recombinant plasmid of pGL3-CiIFNPs and pcDNA3.1-CiIRF-1 were constructed and transiently co-transfected into C. idella kidney (CIK) cells. The impact of CiIRF-1 on CiIFN promoter sequences were measured by luciferase assays. These results demonstrated that CiIRF-1 acts as a positive regulator in the transcription of grass carp IFN gene.


Fish & Shellfish Immunology | 2013

Cloning, expression and functional analysis of PKR from grass carp (Ctenopharyngodon idellus).

Yousheng Hu; Wen Li; Dongming Li; Yong Liu; Lihua Fan; Zechang Rao; Gang Lin; Chengyu Hu

The interferon-induced, dsRNA-activated protein kinase (PKR) is considered as an important component of innate immune system and as a representative effector protein of interferon system. In the present study, PKR gene (CiPKR, JX511974) from grass carp (Ctenopharyngodon idellus) was isolated and identified using homology-based PCR. CiPKR shares high sequence identity with the counterparts of goldfish (Crucian carp) and zebrafish (Danio rerio). The full-length cDNA of CiPKR was found to be 2436 bp, with an ORF of 2067 bp that encodes a polypeptide of 688 amino acids. The deduced polypeptide CiPKR contains three tandem dsRNA-binding motifs (dsRBMs) at the N-terminus and a conserved Ser/Thr kinase domain at the C-terminus. CiPKR was expressed ubiquitously at a low-level under normal conditions, but it could be up-regulated after intraperitoneal (ip) injection with grass carp haemorrhagic virus (GCHV). CiPKR was dramatically up-regulated at 6 h post-injection and then recovered rapidly to normal levels within 24 h; however, it was obviously up-regulated once again at 48 h or 72 h post-injection. It seemed that CiPKR could respond to GCHV infection in an IFN-independent as well as an IFN-dependent pathway. To further investigate its mechanism of biological actions, we constructed a series of recombinant plasmids including pcDNA3.1/PKR-wt, pcDNA3.1/PKR-K430R, pcDNA3.1/PKR-C (deletion of dsRBD sequence) and pcDNA3.1/PKR-C-K430R, and then each recombinant plasmid was transfected into CIK cells. In comparison with those of controls, a 79% and a 64% decrease of luciferase activities were detected in the tested cells transfected with CiPKR and CiPKR-C, respectively; however, luciferase activities were increased in those cells transfected with PKR-K430R and PKR-C-K430R, with a 160% and 115% up-regulation, respectively. Similarly, MTT colorimetric assay indicated that cell viabilities of CIK cells transfected with pcDNA3.1/PKR-wt, pcDNA3.1/PKR-K430R, pcDNA3.1/PKR-C and pcDNA3.1/PKR-C-K430R were 49%, 90%, 54% and 100%, respectively. Our observations suggested that the expression of CiPKR could be up-regulated following viral infection, and then resulted in the inhibition of protein synthesis and the induction of potential apoptosis.


Fish & Shellfish Immunology | 2011

Cloning and functional analysis of \{PKZ\} (PKR-like) from grass carp (Ctenopharyngodon idellus)

Pengjie Yang; Chuxin Wu; Wen Li; Lihua Fan; Gang Lin; Chengyu Hu

The new teleost fish PKZ (PKR-like) full-length cDNA (GU299765) had been cloned and identified from grass carp (Ctenopharyngodon idellus). The cDNA of grass carp PKZ (CiPKZ) has 2185 bp in length with a largest open reading frame (ORF) encoding 513aa. CiPKZ possesses a conserved C-terminal catalytic domain of eIF2α kinase family. Within its N-terminal there are two binding domain (Zα) named Zα1 (1-67aa) and Zα2 (81-152aa). BLAST homologous search reveals that CiPKZ has a high-level homology with other fish PKZs and PKRs. Like other fish PKZs and PKRs, CiPKZ is a ubiquitous tissue expression gene that had a very low level of constitutive expression but up-regulated in response to Poly I:C or hot stress (34 °C). For the purpose of searching for the potential function of CiPKZ, we obtained CiPKZ polypeptide via Escherichia coli Rosetta prokaryotic expression and purified with Ni-NTA His-Bind Resin affinity chromatography. CiPKZ polypeptide was used for the test of phosphorylating eIF2αin vitro. The results demonstrated that CiPKZ could be activated by Z-DNA but not by Poly I:C, and with subsequent could phosphorylate eIF2α. Meanwhile, four pcDNA3.1/PKZ recombinant plasmids, including pcDNA3.1/PKZ-wet, pcDNA3.1/PKZ-wet-K198R, pcDNA3.1/PKZ-wet-C, pcDNA3.1/PKZ-wet-C-K198R had been constructed, respectively. Mouse Myeloma cells (Sp2/0) and Human Umbilical Vein Endothelial Cells (HUVEC) were transiently cotransfected with pcDNA3.1/PKZ recombinant plasmid and PGL-3-promoter plasmid. The results revealed that CiPKZ could greatly decrease luciferase level in these cells. Zα and the K198 amino acid residue may play a key role in its function.


Developmental and Comparative Immunology | 2015

Ctenopharyngodon idella IRF2 plays an antagonistic role to IRF1 in transcriptional regulation of IFN and ISG genes

Meihui Gu; Gang Lin; Qinan Lai; Bin Zhong; Yong Liu; Yichuan Mi; Huarong Chen; Binhua Wang; Lihua Fan; Chengyu Hu

Interferon Regulatory Factors (IRFs) make up a family of transcription factors involved in transcriptional regulation of type I IFN and IFN-stimulated genes (ISG) in cells. In the present study, an IRF2 gene (termed CiIRF2, JX628585) was cloned and characterized from grass carp (Ctenopharyngodon idella). The full-length cDNA of CiIRF2 is 1809 bp in length, with the largest open reading frame (ORF) of 981 bp encoding a putative protein of 326 amino acids. CiIRF2 contains a conserved DNA-binding domain (DBD) in N-terminal and a non-conserved C-terminal region. Protein sequence analysis revealed that CiIRF2 shares significant homology to the known IRF2 counterparts. Phylogenetic reconstruction confirmed its closer evolutionary relationship with other fish counterparts, especially with zebra fish IRF2. CiIRF2 was ubiquitously expressed at low level in all tested grass carp tissues and significantly up-regulated except in brain following poly I:C 6-12 h post stimulation. In order to understand fish innate immune and resistance to virus diseases, recombinant CiIRF2 with His-tag was over-expressed in BL21 Escherichia coli, and the expressed protein was purified by affinity chromatography with Ni-NTA His-Bind Resin. Promoter sequences of grass carp type I IFN gene (CiIFN) and two ISG genes (CiPKR and CiPKZ) were amplified and cloned. In vitro, gel mobility shift assays were employed to analyze the interaction of CiIRF2 protein with promoters of CiIFN, CiPKR and CiPKZ respectively. The results showed that CiIRF2 bound to these promoters with high affinity by means of its DBD. Afterwards, recombinant plasmids of pGL3-CiIFN, pGL3-CiPKR and pGL3-CiPKZ were constructed and transiently co-transfected with pcDNA3.1-CiIRF2 or pcDNA3.1-CiIRF1 respectively into C. idella kidney (CIK) cells. Dual-luciferase reporter assays demonstrated that CiIRF2 down-regulates the transcription activity of CiIFN, CiPKR and CiPKZ genes in CIK cells. To further understand the function of fish IRF2, expression plasmids (pcDNA3.1-IRF2 and pcDNA3.1-IRF1) were transiently co-transfected with pGL3-IFN or pGL3-CiPKZ into CIK cells, respectively. The results revealed that CiIRF2 plays an antagonistic role to CiIRF1 in transcriptional regulation of IFN and ISG genes.


Fish & Shellfish Immunology | 2010

The Zα domain of PKZ from Carassius auratus can bind to d(GC)n in negative supercoils.

Chuxin Wu; Shu-Jun Wang; Gang Lin; Chengyu Hu

PKZ was the most recently discovered member of eIF2alpha kinase family in fish. CaPKZ, the first identified fish PKZ, possessed a conserved eIF2alpha kinase catalytic domain in C-terminal and two Z-DNA binding domains (Zalpha) in N-terminal. The Zalpha of CaPKZ closely resembled that of other Z-DNA binding proteins: ADAR1, DLM-1, and E3L. In order to understand more about the function of CaPKZ, we expressed and purified three constructed peptides of CaPKZ (P(Zalpha)): P(Zalpha1Zalpha2), P(Zalpha1Zalpha1) and P(Zalpha2)(Zalpha2). Moreover, most of the plasmids containing d(GC)(n) inserts were maintained in the Z-conformation, as confirmed by using inhibition of methylation experiments and anti-Z-DNA antibody. Gel mobility shift assays were then used to examine the affinity of these P(Zalpha) to the recombinant plasmids. Meanwhile, a competition experiment using P(Zalpha1Zalpha2) and anti-Z-DNA antibody was performed. The results revealed that P(Zalpha1Zalpha2) and P(Zalpha1Zalpha1) were able to bind to the recombinant plasmids with high affinity, whereas P(Zalpha2)(Zalpha2) could not bind to it. In addition, dimerization of P(Zalpha1Zalpha2) indicated the function unit of Zalpha of CaPKZ would be a dimer.


Fish & Shellfish Immunology | 2013

GRP78 from grass carp (Ctenopharyngodon idella) provides cytoplasm protection against thermal and Pb2+ stress

Yujiao Zhu; Qidi Fan; Huiling Mao; Yong Liu; Chengyu Hu

Glucose regulated protein (GRP) located in endoplasmic reticulum (ER) was a member of heat shock protein (Hsp) family. The protective mechanism adapted to ER stimuli was closely related to GRP. GRP78, known as BiP, was one of central regulator responded to stress in ER. Grass carp (Ctenopharyngodon idella) GRP78 (CiGRP78) was up-regulated in almost tissues, especially in liver, under heat shock (34 °C), cold stress (4 °C) or lead nitrate (0.25 mmol/L) stress. In order to understand the function of CiGRP78 in cellular protection, CiGRP78 ORF cDNA was inserted into the plasmid of pET-32a(+) or pEGFP-C1 respectively, then the recombinant plasmids were transformed or transfected into Escherichia coli cells, mouse myeloma cells (SP2/0) or grass carp kidney cells (CIK). In the cells, CiGRP78 was over-expressed following thermal, cold or Pb(2+) stress. Results showed that CiGRP78 not only contributed to protecting prokaryotic cells against thermal or cold extremes, but also played the same role in SP2/0 and CIK cells. After treatment with heat stress at 42 °C for 1 h, although the viability of the cells declined a lot, CIK cells with pEGFP-C1/CiGRP78 exhibited a higher survival rate (28%) than wild-type cells (7%) or cells with only pEGFP-C1 (5.1%). When the time lag extended to 2.5 h, the survival rates were 19%, 5.7%, 4.8% respectively. In addition, CiGRP78 would also provide a transient cytoplasm protection against Pb(2+) stress in a dose- and time-dependent manner. After treatment with lead nitrate at concentration of 10 μmol/L for 12 h, 24 h or 36 h, the survival rates of cells with pEGFP-C1 or wild-type cells were 46.7% or 46.7% (12 h), 25% or 22% (24 h), 10% or 11% (36 h) respectively. When the cells were treated with lead nitrate at the concentration of 25 μmol/L, the survival rates of cells with pEGFP-C1 or wild-type cells were 45.5% or 30% (12 h), 16.7% or 25% (24 h), 6.5% or 8% (36 h), respectively. CiGRP78 provided a distinct protection in CIK cells at the low concentration for 24 h. The survival rates of CIK cells with pEGFP-C1/CiGRP78 treated with lead nitrate at concentration of 10 μmol/L or 25 μmol/L were 65.9% or 58.8% respectively. When the cells were treated with lead nitrate at concentration of 50 μmol/L for 24 h, the survival rate of the CIK cells was only about 30%. If the process-time was extended to 36 h, CiGRP78 could not provide any cytoplasm protection for CIK cells.


Developmental and Comparative Immunology | 2013

Gig1 and Gig2 homologs (CiGig1 and CiGig2) from grass carp (Ctenopharyngodon idella) display good antiviral activities in an IFN-independent pathway.

Changgui Sun; Yong Liu; Yousheng Hu; Qidi Fan; Wen Li; Xinjian Yu; Huiling Mao; Chengyu Hu

The virus-induced genes, Gig1 and Gig2, were identified first as IFN-stimulated genes (ISGs) from CAB cells. Previous studies suggested that Gig protein may have some potential antiviral functions. In this study, we cloned and identified the full-length cDNA sequences of Gig1 and Gig2 homologs (designated as CiGig1 and CiGig2, respectively) from grass carp (Ctenopharyngodon idella). The complete cDNA sequences of Gig1 and Gig2 contain 1231 bp and 690 bp, encoding for a 194 amino acid protein and a 158 amino acid protein, respectively. Their structure characteristics of CiGig1 and CiGig2 are highly similar to the corresponding homologues in crucian carp. The tissue-specific expressions of CiGig1 and CiGig2 in liver, spleen, kidney, intestine, gill and heart were significantly up-regulated following GCHV challenge. The results indicated that CiGig1 and CiGig2 may be involved in the antiviral immune responses in cells. To better understand the antiviral functions of CiGig1 and CiGig2 in vivo, CiGig1 or CiGig2 ORF cDNA were inserted into the plasmid pcDNA3.1, respectively. Subsequently, the recombinant plasmids were transfected into C. idellus kidney (CIK) cells. The over-expressions of CiGig1 and CiGig2 were observed in the CIK cells after treatment with GCHV. Cells with pcDNA3.1-CiGig1 or pcDNA-CiGig2 exhibited a relatively higher survival rate of (70.84% or 69.24%) than non-transfection (22.16%) and mock-vehicle controls (24.38%) following the virus infection. Our data showed that both CiGig1 and CiGig2 could exert antiviral effects effectively in vivo. Cycloheximide blocking protein synthesis demonstrated that both CiGig1 and CiGig2 mRNA expression could be induced by GCHV rather than by recombinant grass carp IFN (rCiIFN) directly, suggesting that CiGig1 and CiGig2 may not be IFN-stimulated genes since they display their antivirus activities in an IFN-independent pathway.


Gene | 2016

The transcription regulation analysis of Ctenopharyngodon idellus PKR and PKZ genes.

Dan Liu; Huiling Mao; Meihui Gu; Xiaowen Xu; Zhicheng Sun; Gang Lin; Haizhou Wang; Dingkun Xie; Qunhao Hou; Xiangqin Wang; Yichuan Mi; Xiancheng Liu; Chengyu Hu

Protein kinase R (PKR), the double-stranded RNA-activated protein kinase, exists in mammalian and fish. PKZ, a PKR-like protein kinase containing Z-DNA binding domains, just exists in fish. PKR and PKZ work synergistically in the antiviral defense by inhibiting intracellular protein translation. The transcriptional factor IRF3 (interferon regulatory factor 3) acts as a key regulator of type I IFN (Interferon) and ISG (interferon stimulated gene). On the basis of the cloned CiIRF3 previously, CiIRF3 with His-tag was over-expressed in BL21 Escherichia coli, and the expressed protein was purified by affinity chromatography with Ni-NTA His-Bind Resin. In this study, we have demonstrated that grass carp (Ctenopharyngodon idellus) PKR (CiPKR) and PKZ (CiPKZ) genes were inducible by Poly I:C in C. idella kidney (CIK) cells. So, they might be implicated in the intracellular antiviral activity. To understand the up regulatory mechanism of CiPKR and CiPKZ genes upon virus induction, we constructed wild type (pGL3-CiPKR-luc and pGL3-CiPKZ-luc) and the mutant (pGL3-CiPKR-nISRE-luc and pGL3-CiPKZ-nISRE-luc) reporter gene vectors according to the promoter sequences of CiPKR (KJ704845) and CiPKZ (KJ704844). In vitro, gel mobility shift assays demonstrated that CiIRF3 can combine CiPKR and CiPKZ promoters with high affinity. However, CiIRF3 bound to the mutants CiPKR-nISRE and CiPKZ-nISRE faintly. Whereafter, the recombinant plasmids of pGL3-CiPKR-luc, pGL3-CiPKZ-luc were transiently co-transfected with pcDNA3.1-CiIRF3, pcDNA3.1-CiIRF7 respectively into CIK cells. Cell transfection assays indicated that CiIRF3 and CiIRF7 up-regulated the transcriptional level of CiPKR and CiPKZ. The results also revealed that the consensus sequence of ISRE (interferon stimulated response element) is an important regulatory element for the transcriptional initiation of CiPKR and CiPKZ.


Gene | 2014

siRNA-mediated knockdown of CiGRP78 gene expression leads cell susceptibility to heavy metal cytotoxicity

Bin Zhong; Huiling Mao; Qidi Fan; Yong Liu; Yousheng Hu; Yichuan Mi; Fan Wu; Chengyu Hu

Heavy metal ion is one of the critical environmental pollutants accumulated in living organisms and causes toxic or carcinogenic effects once passed threshold levels. As an important member of Hsp70 (heat shock protein 70) family, the 78-kDa glucose-regulated protein (GRP78) can enhance cell survival rates remarkably under thermal stress. Recent studies also demonstrated that the expression of GRP78 enhances the cell survival under heavy metal stress. In this study, three most representative heavy metal ions, Pb(2+), Hg(2+) and Cd(2+), were used to stimulate Ctenopharyngodon idella kidney (CIK) cells. The results showed that cell viability under Pb(2+), Hg(2+) and Cd(2+) stress decreased significantly. The longer and the greater the concentrations of stimulation from heavy metal ions, the higher the rate of cell death was observed. Among them, Hg(2+) is the most hazardous to cells. Under the same stress condition, Hg(2+) resulted in 50% of cell death, Cd(2+) (or Pb(2+)) led to 45% (or 35%) of cell death, respectively. Western immunoblotting indicated that C. idella GRP78 (CiGRP78) protein expression level was enhanced obviously in CIK cells under Pb(2+), Hg(2+) and Cd(2+) stress, meaning CiGRP78 is involved in heavy metal cytotoxicity. To further study the role of CiGRP78 in cytoprotection, we designed the siRNA against CiGRP78 (from nucleotides +788 to +806) and transfected it into CIK cells to silence endogenous CiGRP78. The viability rate of CIK cells transfected with or without siRNA incubated with HgCl2 for 12h showed a significant decrease from 50% to 21%. Our results showed that CiGRP78 protects cells against heavy metal stimuli to some extent.

Collaboration


Dive into the Chengyu Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge