Chengyuan Guo
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengyuan Guo.
PLOS ONE | 2011
R. Z. Wang; Wenwen Huang; Liang Chen; Linna Ma; Chengyuan Guo; Xiaoqiang Liu
Background Although it has been widely accepted that global changes will pose the most important constrains to plant survival and distribution, our knowledge of the adaptive mechanism for plant with large-scale environmental changes (e.g. drought and high temperature) remains limited. Methodology/Principal findings An experiment was conducted to examine anatomical and physiological plasticity in Leymus chinensis along a large-scale geographical gradient from 115° to 124°E in northeast China. Ten sites selected for plant sampling at the gradient have approximately theoretical radiation, but differ in precipitation and elevation. The significantly increasing in leaf thickness, leaf mass per area, vessel and vascular diameters, and decreasing in stoma density and stoma index exhibited more obvious xerophil-liked traits for the species from the moist meadow grassland sites in contrast to that from the dry steppe and desert sites. Significant increase in proline and soluble sugar accumulation, K+/Na+ for the species with the increasing of stresses along the gradient showed that osmotic adjustment was enhanced. Conclusion/Significance Obvious xerophytic anatomical traits and stronger osmotic adjustment in stress conditions suggested that the plants have much more anatomical and physiological flexibilities than those in non-stress habitats along the large-scale gradient.
PLOS ONE | 2012
Linna Ma; Wenwen Huang; Chengyuan Guo; R. Z. Wang; Chunwang Xiao
Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects.
Scientific Reports | 2017
Chengyuan Guo; Linna Ma; S. Yuan; R. Z. Wang
At the species level, plants can respond to climate changes by changing their leaf traits; however, there is scant information regarding the responses of morphological, physiological and anatomical traits of plant functional types (PFTs) to aridity. Herein, the leaf traits of five PFTs representing 17 plant species in temperate grasslands were examined along a large-scale aridity gradient in northeastern China. The results show that leaf thickness in shrubs, perennial grasses and forbs increased with heightened aridity. Trees increased soluble sugar content, but shrubs, perennials and annual grasses enhanced proline accumulation due to increasing aridity. Moreover, vessel diameter and stomatal index in shrubs and perennial grasses decreased with increasing aridity, but stomatal density and vascular diameter of five PFTs were not correlated with water availability. In conclusion, divergences in adaptive strategies to aridity among these PFTs in temperate grasslands were likely caused by differences in their utilization of water resources, which have different temporal and spatial distribution patterns. Leaf traits of shrubs and perennial grasses had the largest responses to variability of aridity through regulation of morphological, physiological and anatomical traits, which was followed by perennial forbs. Trees and annual grasses endured aridity only by adjusting leaf physiological processes.
Scientific Reports | 2016
S. Yuan; Linna Ma; Chengyuan Guo; R. Z. Wang
Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient.
Biogeosciences | 2015
Linna Ma; Chengyuan Guo; S. Yuan; R. Z. Wang
Biogeosciences | 2013
Linna Ma; Chengyuan Guo; X. Xin; S. Yuan; R. Z. Wang
Biogeosciences | 2014
Linna Ma; S. Yuan; Chengyuan Guo; Ruzhen Wang
Journal of Plant Ecology-uk | 2016
S. Yuan; Chengyuan Guo; Linna Ma; R. Z. Wang
Biogeosciences Discussions | 2014
Linna Ma; Chengyuan Guo; S. Yuan; R. Z. Wang
Biogeosciences Discussions | 2014
Linna Ma; Chengyuan Guo; S. Yuan; Ruzhen Wang