Chengyuan Lin
Hong Kong Baptist University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengyuan Lin.
Journal of Natural Products | 2013
Hai-Tao Xiao; Chengyuan Lin; Derek Hoi-Hang Ho; Jiao Peng; Yan Chen; Siu-Wai Tsang; Michael Wong; Xiao-Jun Zhang; Man Zhang; Zhaoxiang Bian
The therapeutic effect of corilagin (1) was evaluated in an acute colitis model induced by dextran sulfate sodium (DSS) in mice, and the mechanism of action was investigated in this study. Animals were challenged with 2% DSS drinking water for 5 consecutive days and then intraperitoneally treated with 1 (7.5, 15, and 30 mg/kg) daily for 7 days. It was found that 1 significantly decreased the disease activity index, inhibited the shortening of colon length, reduced colon tissue damage, and suppressed myeloperoxidase activity. Moreover, 1 greatly suppressed the secretion of TNF-α, IL-6, and IL-1β, inhibited the degradation of IκB α, and down-regulated expression of cleaved caspase-3 and cleaved caspase-9 in colon tissues of DSS-treated mice. These findings demonstrated that 1 exerts a protective effect on DSS-induced colitis, and its underlying mechanisms are associated with inhibition of the NF-κB pathway that mitigates colon inflammatory responses and apoptosis of intestinal epithelial cells.
PLOS ONE | 2013
Siu Wai Tsang; Hong-Jie Zhang; Chengyuan Lin; Hai-Tao Xiao; Michael Wong; Hongcai Shang; Zhijun Yang; Aiping Lu; Ken Kin-Lam Yung; Zhaoxiang Bian
Pancreatic fibrosis, a prominent histopathological feature of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma, is essentially a dynamic process that leads to irreversible scarring of parenchymal tissues of the pancreas. Though the exact mechanisms of its initiation and development are poorly understood, recent studies suggested that the activation of pancreatic stellate cells (PSCs) plays a critical role in eliciting such active course of fibrogenesis. Anthraquinone compounds possess anti-inflammatory bioactivities whereas its natural derivative rhein has been shown to effectively reduce tissue edema and free-radical production in rat models of inflammatory conditions. Apart from its anti-inflammatory properties, rhein actually exerts strong anti-fibrotic effects in our current in-vivo and in-vitro experiments. In the mouse model of cerulein-induced CP, prolonged administration of rhein at 50 mg/kg/day significantly decreased immunoreactivities of the principal fibrotic activators alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) on pancreatic sections implicating the activation of PSCs, which is the central tread to fibrogenesis, was attenuated. Consequently, the overwhelmed deposition of extracellular matrix proteins fibronectin 1 (FN1) and type I collagen (COL I-α1) in exocrine parenchyma was found accordingly reduced. In addition, the expression levels of sonic hedgehog (SHH), which plays important roles in molecular modulation of various fibrotic processes, and its immediate effector GLI1 in pancreatic tissues were positively correlated to the degree of cerulein-induced fibrosis. Such up-regulation of SHH signaling was restrained in rhein-treated CP mice. In cultured PSCs, we demonstrated that the expression levels of TGF-β-stimulated fibrogenic markers including α-SMA, FN1 and COL I-α1 as well as SHH were all notably suppressed by the application of rhein at 10 μM. The present study firstly reported that rhein attenuates PSC activation and suppresses SHH/GLI1 signaling in pancreatic fibrosis. With strong anti-fibrotic effects provided, rhein can be a potential remedy for fibrotic and/or PSC-related pathologies in the pancreas.
Current Alzheimer Research | 2015
See-Lok Ho; Chung-Yan Poon; Chengyuan Lin; Ting Yan; Daniel Wai-Jing Kwong; Ken Kin-Lam Yung; Man S. Wong; Zhaoxiang Bian; Hung-Wing Li
Being one of the hallmarks of Alzheimers disease, β-amyloid (Aβ) aggregates induce complicated neurotoxicity. Evidences show that the underlying mechanism of neurotoxicity involves a glutamate receptor subtype, N-methyl-D-aspartate (NMDA) receptor, an increase in intracellular calcium(II) ion loading as well as an elevation in oxidation stress. In this work, among the 35 chemical components of Chinese herbal medicines (CHMs) being screened for inhibitors of Aβ aggregation, four of them, namely albiflorin, aloeemodin, neohesperidin and physcion, were found for the first time to exhibit a potent inhibitory effect on Aβ(1-40) and Aβ(1-42) aggregation. Their neuroprotective capability on primary hippocampal neuronal cells was also investigated by MTT assay, ROS assay and intracellular calcium(II) ion concentration measurement. It was interesting to find that physcion was rather toxic to neuronal cells while albiflorin, aloeemodin and neohesperidin reduced the toxicity and ROS induced by both monomeric and oligomeric Aβ species. In addition, albiflorin was particularly powerful in maintaining the intracellular Ca(2+) concentration.
Molecular and Cellular Endocrinology | 2015
Chengyuan Lin; Xue Jiang; Guangfu Hu; Wendy K. W. Ko; Anderson O. L. Wong
Prolactin (PRL), a pituitary hormone with diverse functions, is well-documented to be under the control of both hypothalamic and peripheral signals. Intrapituitary modulation of PRL expression via autocrine/paracrine mechanisms has also been reported, but similar information is still lacking in lower vertebrates. To shed light on autocrine/paracrine regulation of PRL in fish model, grass carp PRL was cloned and its expression in the carp pituitary has been confirmed. In grass carp pituitary cells, local secretion of PRL could suppress PRL release with concurrent rises in PRL production and mRNA levels. Paracrine stimulation by growth hormone (GH) was found to up- regulate PRL secretion, PRL production and PRL transcript expression, whereas the opposite was true for the local actions of luteinizing hormone (LH). Apparently, local interactions of PRL, GH and LH via autocrine/paracrine mechanisms could modify PRL production in carp pituitary cells through differential regulation of PRL mRNA stability and gene transcription.
Pharmacological Research | 2016
Yan-hong Li; Hai-Tao Xiao; Dong-Dong Hu; Sarwat Fatima; Chengyuan Lin; Huai-xue Mu; Nikki P. Lee; Zhaoxiang Bian
Ulcerative colitis (UC) is an increasingly common condition particularly in developed countries. The lack of satisfactory treatment has fueled the search for alternative therapeutic strategies. In recent studies, berberine, a plant alkaloid with a long history of medicinal use in Chinese medicine, has shown beneficial effects against animal models of acute UC. However, UC usually presents as a chronic condition with frequent relapse in patients. How berberine will act on chronic UC remains unclear. In the present study, we adopted dextran sulfate sodium (DSS)-induced chronic relapsing colitis model to assess the ameliorating activity of berberine. Colitis was induced by two cycles of 2.0% DSS for five days followed by 14days of drinking water plus a third cycle consisting of DSS only for five days. The colitis mice were orally administered 20mg/kg berberine from day 13 onward for 30days and monitored daily. The body weight, stool consistency, and stool bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and samples were collected and subjected to histological, RT-qPCR, Western blot, and LC-MS analyses. Lymphocytes were isolated from spleens and mesenteric lymph nodes (MLN) and cultured for flow cytometry analysis of IL-17 secretion from CD4(+) cells and the Th17 cell differentiation. Results showed that berberine significantly ameliorated the DAI, colon shortening, colon tissue injury, and reduction of colonic expression of tight junction (TJ) protein ZO-1 and occludin of colitis mice. Notably, berberine treatment pronouncedly reduced DSS-upregulated Th17-related cytokine (IL-17 and ROR-γt) mRNAs in the colon. Furthermore, the mRNA expression of IL-6 and IL-23, and the phosphorylation of STAT3 in colon tissues from DSS-treated mice were pronouncedly inhibited by berberine. Moreover, the up-regulation of IL-17 secretion from CD4(+) cells of spleens and MLNs caused by DSS were significantly reversed by berberine treatment. Furthermore, Th17 cell differentiation from naive CD4(+) cells isolated from above DSS colitis mice were suppressed by berberine in a concentration-dependent manner. In summary, we demonstrated for the first time that berberine reduced the severity of chronic relapsing DSS-induced colitis by suppressing Th17 responses. The demonstration of activity in this mouse model supports the possibility of clinical efficacy of berberine in treating chronic UC.
Journal of Chromatography B | 2015
Dong-Dong Hu; Quan-Bin Han; Linda Li-Dan Zhong; Yan-hong Li; Chengyuan Lin; Hing-Man Ho; Man Zhang; Shuhai Lin; Ling Zhao; Hong Mi; Hongsheng Tan; Hong-Xi Xu; Zhaoxiang Bian
Ma-Zi-Ren-Wan (MZRW) is a classic Chinese formula which has been used to treat human constipation in China for over 2000 years. In order to make good and rational use of this formula in the future, this paper presents the first attempt to track the pharmacokinetic features of MZRW in rat using rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Ten chemical components of MZRW, namely, rhein, emodin, aloe emodin, hesperidin, naringin, amygdalin, albiflorin, paeoniflorin, magnolol and honokiol, were simultaneously determined in rat plasma after a single oral administration (10g/kg body weight) of MZRW to rats. Geniposide and liquiritin were used as internal standards. The separation was performed on a Waters ACQUITY BEH C18 column (100mm×2.1mm, 1.7μm). The detection was conducted by multiple-reaction monitoring (MRM) in negative ionization mode. Two highest abundant MRM transitions without interference were optimized for each analyte. This method was well validated in terms of linearity, precision, accuracy, recovery, matrix effect and stability. All calibration curves had good linearity (r(2)>0.995) over the concentration range from 3.9 to 125.0ng/mL for emodin, 3.9-500.0ng/mL for amygdalin, 2.0-4000.0ng/mL for naringin and hesperidin, 3.9-2000.0ng/mL for magnolol, 7.8-2000.0ng/mL for rhein and 3.9-4000.0ng/mL for albiflorin, paeoniflorin, aloe emodin and honokiol. The intra-day and inter-day precision (relative standard deviation) was within 15%, the accuracy (relative error) ranged from -13.6% to 15.1%, and the lower limit of quantification in plasma ranged between 2.0ng/mL and 7.8ng/mL. Extraction recovery, matrix effect and stability were satisfactory. The validated method was successfully applied to a pharmacokinetic study of these ten compounds after oral administration of MZRW to rats. The pharmacokinetic parameters of each compound can facilitate clinical studies in the future.
Scientific Reports | 2015
Chengyuan Lin; Man Zhang; Li-ling Yang; Hai-bo Fu; Ling Zhao; Linda L. D. Zhong; Huai-xue Mu; Xiao-Ke Shi; Christina Fp Leung; Baomin Fan; Miao Jiang; Aiping Lu; Lixin Zhu; Zhaoxiang Bian
A novel neuropeptide spexin was found to be broadly expressed in various endocrine and nervous tissues while little is known about its functions. This study investigated the role of spexin in bowel movement and the underlying mechanisms. In functional constipation (FC) patients, serum spexin levels were significantly decreased. Consistently, in starved mice, the mRNA of spexin was significantly decreased in intestine and colon. Spexin injection increased the velocity of carbon powder propulsion in small intestine and decreased the glass beads expulsion time in distal colon in mice. Further, spexin dose-dependently stimulated the intestinal/colonic smooth muscle contraction. Galanin receptor 2 (GALR2) antagonist M871, but not Galanin receptor 3 (GALR3) antagonist SNAP37899, effectively suppressed the stimulatory effects of spexin on intestinal/colonic smooth muscle contraction, which could be eliminated by extracellular [Ca2+] removal and L-type voltage-dependentCa2+ channel (VDCC) inhibitor nifedipine. Besides, spexin dramatically increased the [Ca2+]i in isolated colonic smooth muscle cells. These data indicate that spexin can act on GALR2 receptor to regulate bowel motility by activating L-type VDCC. Our findings provide evidence for important physiological roles of spexin in GI functions. Selective action on spexin pathway might have therapeutic effects on GI diseases with motility disorders.
PLOS ONE | 2015
Yan-hong Li; Man Zhang; Hai-Tao Xiao; Hai-bo Fu; Alan Ho; Chengyuan Lin; Yu Huang; Ge Lin; Zhaoxiang Bian
Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy.
Endocrinology | 2014
Guangfu Hu; Mulan He; Wendy K. W. Ko; Chengyuan Lin; Anderson O. L. Wong
TAC3 is a member of tachykinins, and its gene product neurokinin B (NKB) has recently emerged as a key regulator for LH through modulation of kisspeptin/GnRH system within the hypothalamus. In fish models, TAC3 not only encodes NKB but also a novel tachykinin-like peptide called NKB-related peptide (NKBRP), and the pituitary actions of these TAC3 gene products are still unknown. Using grass carp as a model, the direct effects and postreceptor signaling for the 2 TAC3 products were examined at the pituitary level. Grass carp TAC3 was cloned and confirmed to encode NKB and NKBRP similar to that of other fish species. In carp pituitary cells, NKB and NKBRP treatment did not affect LH release and gene expression but up-regulated prolactin (PRL) and somatolactin (SL)α secretion, protein production, and transcript expression. The stimulation by these 2 TAC3 gene products on PRL and SLα release and mRNA levels were mediated by pituitary NK2 and NK3 receptors, respectively. Apparently, NKB- and NKBRP-induced SLα secretion and transcript expression were caused by adenylate cyclase/cAMP/protein kinase A, phospholipase C/inositol 1,4,5-triphosphate/protein kinase C and Ca(2+)/calmodulin/Ca(2+)/calmodulin-dependent protein kinase II activation. The signal transduction for the corresponding responses on PRL release and mRNA expression were also similar, except that the protein kinase C component was not involved. These findings suggest that the 2 TAC3 gene products do not play a role in LH regulation at the pituitary level in carp species but may serve as novel stimulators for PRL and SLα synthesis and secretion via overlapping postreceptor signaling mechanisms coupled to NK2 and NK3 receptors, respectively.
BMC Bioinformatics | 2017
Hong Mi; Chengyuan Lin; Ling Zhao; Linda L. D. Zhong; Feng-bin Liu; Ge Zhang; Aiping Lu; Zhaoxiang Bian
BackgroundMany computational approaches have been used for target prediction, including machine learning, reverse docking, bioactivity spectra analysis, and chemical similarity searching. Recent studies have suggested that chemical similarity searching may be driven by the most-similar ligand. However, the extent of bioactivity of most-similar ligands has been oversimplified or even neglected in these studies, and this has impaired the prediction power.ResultsHere we propose the MOst-Similar ligand-based Target inference approach, namely MOST, which uses fingerprint similarity and explicit bioactivity of the most-similar ligands to predict targets of the query compound. Performance of MOST was evaluated by using combinations of different fingerprint schemes, machine learning methods, and bioactivity representations. In sevenfold cross-validation with a benchmark Ki dataset from CHEMBL release 19 containing 61,937 bioactivity data of 173 human targets, MOST achieved high average prediction accuracy (0.95 for pKi ≥ 5, and 0.87 for pKi ≥ 6). Morgan fingerprint was shown to be slightly better than FP2. Logistic Regression and Random Forest methods performed better than Naïve Bayes. In a temporal validation, the Ki dataset from CHEMBL19 were used to train models and predict the bioactivity of newly deposited ligands in CHEMBL20. MOST also performed well with high accuracy (0.90 for pKi ≥ 5, and 0.76 for pKi ≥ 6), when Logistic Regression and Morgan fingerprint were employed. Furthermore, the p values associated with explicit bioactivity were found be a robust index for removing false positive predictions. Implicit bioactivity did not offer this capability. Finally, p values generated with Logistic Regression, Morgan fingerprint and explicit activity were integrated with a false discovery rate (FDR) control procedure to reduce false positives in multiple-target prediction scenario, and the success of this strategy it was demonstrated with a case of fluanisone. In the case of aloe-emodin’s laxative effect, MOST predicted that acetylcholinesterase was the mechanism-of-action target; in vivo studies validated this prediction.ConclusionsUsing the MOST approach can result in highly accurate and robust target prediction. Integrated with a FDR control procedure, MOST provides a reliable framework for multiple-target inference. It has prospective applications in drug repurposing and mechanism-of-action target prediction.