Chengyuan Tang
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengyuan Tang.
Journal of Clinical Investigation | 2009
Hui Xiong; Danling Wang; Linan Chen; Yeun Su Choo; Hong Ma; Chengyuan Tang; Kun Xia; Ze'ev Ronai; Xiaoxi Zhuang; Zhuohua Zhang
Mutations in PARKIN, pten-induced putative kinase 1 (PINK1), and DJ-1 are individually linked to autosomal recessive early-onset familial forms of Parkinson disease (PD). Although mutations in these genes lead to the same disease state, the functional relationships between them and how their respective disease-associated mutations cause PD are largely unknown. Here, we show that Parkin, PINK1, and DJ-1 formed a complex (termed PPD complex) to promote ubiquitination and degradation of Parkin substrates, including Parkin itself and Synphilin-1 in neuroblastoma cells and human brain lysates. Genetic ablation of either Pink1 or Dj-1 resulted in reduced ubiquitination of endogenous Parkin as well as decreased degradation and increased accumulation of aberrantly expressed Parkin substrates. Expression of PINK1 enhanced Parkin-mediated degradation of heat shock-induced misfolded protein. In contrast, PD-pathogenic Parkin and PINK1 mutations showed reduced ability to promote degradation of Parkin substrates. This study identified a functional ubiquitin E3 ligase complex consisting of PD-associated Parkin, PINK1, and DJ-1 to promote degradation of un-/misfolded proteins and suggests that their PD-pathogenic mutations impair E3 ligase activity of the complex, which may constitute a mechanism underlying PD pathogenesis.
Redox biology | 2017
Li Xiao; Xiaoxuan Xu; Fan Zhang; Ming Wang; Yan Xu; Dan Tang; Jiahui Wang; Yan Qin; Yu Liu; Chengyuan Tang; Liyu He; Anna Greka; Zhiguang Zhou; Fuyou Liu; Zheng Dong; Lin Sun
Mitochondria play a crucial role in tubular injury in diabetic kidney disease (DKD). MitoQ is a mitochondria-targeted antioxidant that exerts protective effects in diabetic mice, but the mechanism underlying these effects is not clear. We demonstrated that mitochondrial abnormalities, such as defective mitophagy, mitochondrial reactive oxygen species (ROS) overexpression and mitochondrial fragmentation, occurred in the tubular cells of db/db mice, accompanied by reduced PINK and Parkin expression and increased apoptosis. These changes were partially reversed following an intraperitoneal injection of mitoQ. High glucose (HG) also induces deficient mitophagy, mitochondrial dysfunction and apoptosis in HK-2 cells, changes that were reversed by mitoQ. Moreover, mitoQ restored the expression, activity and translocation of HG-induced NF-E2-related factor 2 (Nrf2) and inhibited the expression of Kelch-like ECH-associated protein (Keap1), as well as the interaction between Nrf2 and Keap1. The reduced PINK and Parkin expression noted in HK-2 cells subjected to HG exposure was partially restored by mitoQ. This effect was abolished by Nrf2 siRNA and augmented by Keap1 siRNA. Transfection with Nrf2 siRNA or PINK siRNA in HK-2 cells exposed to HG conditions partially blocked the effects of mitoQ on mitophagy and tubular damage. These results suggest that mitoQ exerts beneficial effects on tubular injury in DKD via mitophagy and that mitochondrial quality control is mediated by Nrf2/PINK.
Seminars in Nephrology | 2015
Samir M. Parikh; Yuan Yang; Liyu He; Chengyuan Tang; Ming Zhan; Zheng Dong
Per milligram of tissue, only the heart exceeds the kidneys abundance of mitochondria. Not surprisingly, renal mitochondria are most densely concentrated in the epithelium of the nephron, at sites where the chemical work of moving solutes against electrochemical gradients places large and constant demands for adenosine triphosphate. Derangements of renal epithelial mitochondria appear to be a hallmark for diverse forms of acute kidney injury (AKI). The pathogenesis of multiple-organ dysfunction syndrome in sepsis is complex, but a substantial body of experimental and observational human data supports the twin concepts that mitochondrial dysfunction contributes to impaired filtration and that recovery of mitochondrial structure and function is essential for recovery from sepsis-associated AKI. These insights have suggested novel methods to diagnose, stratify, prevent, or even treat this common and deadly complication of critical illness. This review will do the following: (1) describe the structure and functions of healthy mitochondria and how renal energy metabolism relates to solute transport; (2) provide an overview of the evidence linking mitochondrial pathology to renal disease; (3) summarize the mitochondrial lesions observed in septic AKI; (4) analyze the role of mitochondrial processes including fission/fusion, mitophagy, and biogenesis in the development of septic AKI and recovery from this disease; and (5) explore the potential for therapeutically targeting mitochondria to prevent or treat septic AKI.
American Journal of Nephrology | 2014
Liyu He; Xiaofei Peng; Jiefu Zhu; Xian Chen; Hong Liu; Chengyuan Tang; Zheng Dong; Fuyou Liu; Youming Peng
Background: Acute kidney injury (AKI) is a frequent and serious complication of sepsis. A growing body of evidence now suggests that inflammatory reactions and tubular dysfunction induced by oxidative stress involved in the mechanisms of the disease. This study aimed to determine the role of anti-inflammatory and anti-oxidant activities of mangiferin (MA) in sepsis-induced AKI. Methods: We investigated the effects of MA on apoptosis of rat kidney proximal tubular cell (RPTC), together with renal function and morphological alterations of mice undergoing cecal-ligation and puncture (CLP). The levels of oxidative stress in kidney tissues were also determined. Moreover, we mainly focus on the effects of MA in regulating the production of NLRP3 and Nrf2 in the present study. Results: The exposure to LPS (5 Vg/ml) yielded a significant increase of apoptosis in RPTC cells, which was largely inhibited by MA pretreatment. MA attenuates renal dysfunction and ameliorates the morphological changes in the septic mice induced by CLP. MA inhibits oxidative stress, decreases serum levels of IL-1F and IL-18, and prevents tubular epithelial cells apoptosis in kidneys of CLP mice model. Data in this study also suggest that MA promotes Nrf2 expression and suppresses renal NLRP3 inflammasome activation. Conclusion: In summary, MA protects against sepsis-induced AKI through NLRP3 inflammasome inhibition and Nrf2 up-regulation. Thus, the mangiferin could thus be a promising candidate for development of a multi-potent drug. i 2014 S. Karger AG, Basel
Archives of Toxicology | 2015
Shiyao Zhu; Navjotsingh Pabla; Chengyuan Tang; Liyu He; Zheng Dong
Cisplatin and its derivatives are widely used chemotherapeutic drugs for cancer treatment. However, they have debilitating side effects in normal tissues and induce ototoxicity, neurotoxicity, and nephrotoxicity. In kidneys, cisplatin preferentially accumulates in renal tubular cells causing tubular cell injury and death, resulting in acute kidney injury (AKI). Recent studies have suggested that DNA damage and the associated DNA damage response (DDR) are an important pathogenic mechanism of AKI following cisplatin treatment. Activation of DDR may lead to cell cycle arrest and DNA repair for cell survival or, in the presence of severe injury, kidney cell death. Modulation of DDR may provide novel renoprotective strategies for cancer patients undergoing cisplatin chemotherapy.
Journal of Biological Chemistry | 2016
Tongmei Zhang; Liang Xue; Li Li; Chengyuan Tang; Zhengqing Wan; Ruo-Xi Wang; Jieqiong Tan; Ya Tan; Hailong Han; Runyi Tian; Timothy R. Billiar; W. Andy Tao; Zhuohua Zhang
Mutations in PINK1 (PTEN-induced putative kinase 1) cause early onset familial Parkinsons disease (PD). PINK1 accumulates on the outer membrane of damaged mitochondria followed by recruiting parkin to promote mitophagy. Here, we demonstrate that BCL2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a mitochondrial BH3-only protein, interacts with PINK1 to promote the accumulation of full-length PINK1 on the outer membrane of mitochondria, which facilitates parkin recruitment and PINK1/parkin-mediated mitophagy. Inactivation of BNIP3 in mammalian cells promotes PINK1 proteolytic processing and suppresses PINK1/parkin-mediated mitophagy. Hypoxia-induced BNIP3 expression results in increased expression of full-length PINK1 and mitophagy. Consistently, expression of BNIP3 in Drosophila suppresses muscle degeneration and the mitochondrial abnormality caused by PINK1 inactivation. Together, the results suggest that BNIP3 plays a vital role in regulating PINK1 mitochondrial outer membrane localization, the proteolytic process of PINK1 and PINK1/parkin-mediated mitophagy under physiological conditions. Functional up-regulation of BNIP3 may represent a novel therapeutic strategy to suppress the progression of PD.
Canadian Journal of Physiology and Pharmacology | 2015
Liyu He; Xiaofei Peng; Jiefu Zhu; Guoyong Liu; Xian Chen; Chengyuan Tang; Hong Liu; Fuyou Liu; Youming Peng
BACKGROUND Gentamicin-induced nephrotoxicity is one of the most common causes of acute kidney injury (AKI). The phenotypic alterations that contribute to acute kidney injury include inflammatory response and oxidative stress. Curcumin has a wide range biological functions, especially as an antioxidant. This study was designed to evaluate the renoprotective effects of curcumin treatment in gentamicin-induced AKI. METHODS Gentamicin-induced AKI was established in female Sprague-Dawley rats. Rats were treated with curcumin (100 mg/kg body mass) by intragastric administration, once daily, followed with an intraperitoneal injection of gentamicin sulfate solution at a dose of 80 mg/kg body mass for 8 consecutive days. At days 3 and 8, the rats were sacrificed, and the kidneys and blood samples were collected for further analysis. RESULTS The animals treated with gentamicin showed marked deterioration of renal function, together with higher levels of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) in the plasma as compared with the controls. Animals that underwent intermittent treatment with curcumin exhibited significant improvements in renal functional parameters. We also observed that treatment with curcumin significantly attenuated renal tubular damage, apoptosis, and oxidative stress. Curcumin treatment exerted anti-apoptosis and anti-oxidative effects by up-regulating Nrf2/HO-1 and Sirt1 expression. CONCLUSIONS Our data clearly demonstrate that curcumin protects kidney from gentamicin-induced AKI via the amelioration of oxidative stress and apoptosis of renal tubular cells, thus providing hope for the amelioration of gentamicin-induced nephrotoxicity.
PLOS ONE | 2012
Jingwei Chi; Li Li; Mujun Liu; Jie-Qiong Tan; Chengyuan Tang; Qian Pan; Danling Wang; Zhuohua Zhang
Mutations in Connexin-31 (Cx31) are associated with multiple human diseases including erythrokeratodermia variabilis (EKV). The molecular action of Cx31 pathogenic mutants remains largely elusive. We report here that expression of EKV pathogenic mutant Cx31R42P induces cell death with necrotic characteristics. Inhibition of hemichannel activity by a connexin hemichannel inhibitor or high extracellular calcium suppresses Cx31R42P-induced cell death. Expression of Cx31R42P induces ER stress resulting in reactive oxygen species (ROS) production, in turn, to regulate gating of Cx31R42P hemichannels and Cx31R42P induced cell death. Moreover, Cx31R42P hemichannels play an important role in mediating ATP release from the cell. In contrast, no hemichannel activity was detected with cells expressing wildtype Cx31. Together, the results suggest that Cx31R42P forms constitutively active hemichannels to promote necrotic cell death. The Cx31R42P active hemichannels are likely resulted by an ER stress mediated ROS overproduction. The study identifies a mechanism of EKV pathogenesis induced by a Cx31 mutant and provides a new avenue for potential treatment strategy of the disease.
Toxicology and Applied Pharmacology | 2016
Mingjuan Yan; Chengyuan Tang; Zhengwei Ma; Shuang Huang; Zheng Dong
DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.
PLOS ONE | 2013
Yunting Lin; Chengyuan Tang; Hua He; Ranhui Duan
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder caused by aberrant expansion of CGG repeats in 5′ UTR of FMR1 gene. The elevated mRNA confers a toxic gain-of-function thought to be the critical event of pathogenesis. Expressing rCGG90 repeats of the human FMR1 5′UTR in Drosophila is sufficient to induce neurodegeneration. Rapamycin has been demonstrated to attenuate neurotoxicity by inducing autophagy in various animal models of neurodegenerative diseases. Surprisingly, we observed rapamycin exacerbated rCGG90-induced neurodegenerative phenotypes through an autophagy-independent mechanism. CGG90 expression levels of FXTAS flies exposed to rapamycin presented no significant differences. We further demonstrated that activation of the mammalian target of rapamycin (mTOR) signaling could suppress neurodegeneration of FXTAS. These findings indicate that rapamycin will exacerbate neurodegeneration, and that enhancing autophagy is insufficient to alleviate neurotoxicity in FXTAS. Moreover, these results suggest mTOR and its downstream molecules as new therapeutic targets for FXTAS by showing significant protection against neurodegeneration.