Chenhui Zhou
Nanjing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chenhui Zhou.
Brain Research | 2015
Chun-xi Wang; Guang-bin Xie; Chenhui Zhou; Xiang-Sheng Zhang; Tao Li; Jianguo Xu; Ning Li; Ke Ding; Chun-Hua Hang; Ji-Xin Shi; Mengliang Zhou
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) largely contributes to unfavorable outcomes. Hence, effective therapeutic strategies targeting on EBI have recently become a major goal in the treatment of SAH patients. Baicalein is a flavonoid that has been shown to offer neuroprotection in kinds of brain injury models. This study investigated the effects of baicalein on EBI in rats following SAH. SAH was inducted in male Sprauge-Dawley rats by injection of fresh non-heparinized arterial blood into the prechiasmatic cistern. Baicalein (30 or 100 mg/kg) or vehicle were administrated 30 min after injury. Neurological deficit, brain edema, blood-brain barrier (BBB) permeability and neural cell apoptosis were assessed. To explore the further mechanisms, the change of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) signaling pathway and the levels of apoptosis associated proteins were also examined. Our study showed that treatment with baicalein (30 mg/kg) significantly improved neurological function at 24h after SAH and reduced brain edema at both 24h and 72 h after SAH. Baicalein also significantly reduced neural cell death, BBB permeability. These changes were associated with the remarkable reductions of TLR4 expression, IκB-α degradation, NF-κB translocation to nucleus, as well as the expressions of matrix metalloproteinase-9, tight junctions protein, interleukin-1β and tumor necrosis factor- ɑ. These findings suggest that baicalein may ameliorate EBI after SAH potentially via inhibition of inflammation-related pathway.
Brain Research | 2016
Hua-Sheng Zhang; Hua Li; Dingding Zhang; Huiying Yan; Zi-Huan Zhang; Chenhui Zhou; Zhen-Nan Ye; Qiang Chen; Tian-Wei Jiang; Jing-Peng Liu; Chun-Hua Hang
Myeloid differentiation factor 88(MyD88) is an endogenous adaptor protein that plays an important role in coordinating intracellular inflammatory responses induced by agonists of the Toll-like receptor and interleukin-1 receptor families. MyD88 has been reported to be essential for neuronal death in animal models and may represent a therapeutic target for pharmacologic inhibition following traumatic brain injury (TBI). The purpose of the current study was to investigate the neuroprotective effect of MyD88 specific inhibitor ST2825 in an experimental mouse model of TBI. Intracerebroventricular (ICV) injection of high concentration (20μg/μL) ST2825 (15min post TBI) attenuated the development of TBI in mice, markedly improved neurological function and reduced brain edema. Decreased neural apoptosis and increased neuronal survival were also observed. Biochemically, the high concentration of ST2825 significantly reduced the levels of MyD88, further decreased TAK1, p-TAK1, nuclear p65 and increased IκB-α. Additionally, ST2825 significantly reduced the levels of Iba-1 and inflammatory factors TNF-α and IL-1β. These data provide an experimental rationale for evaluation of MyD88 as a drug target and highlight the potential therapeutic implications of ST2825 in TBI.
Frontiers in Molecular Neuroscience | 2017
Ling-Yun Wu; Zhen-Nan Ye; Chenhui Zhou; Chun-xi Wang; Guang-bin Xie; Xiang-Sheng Zhang; Yongyue Gao; Zi-Huan Zhang; Mengliang Zhou; Zong Zhuang; Jing-Peng Liu; Chun-Hua Hang; Ji-Xin Shi
Background: Accumulating evidence suggests that neuroinflammation plays a critical role in early brain injury after subarachnoid hemorrhage (SAH). Pannexin-1 channels, as a member of gap junction proteins located on the plasma membrane, releases ATP, ions, second messengers, neurotransmitters, and molecules up to 1 kD into the extracellular space, when activated. Previous studies identified that the opening of Pannexin-1 channels is essential for cellular migration, apoptosis and especially inflammation, but its effects on inflammatory response in SAH model have not been explored yet. Methods: Adult male Sprague-Dawley rats were divided into six groups: sham group (n = 20), SAH group (n = 20), SAH + LV-Scramble-ShRNA group (n = 20), SAH + LV-ShRNA-Panx1 group (n = 20), SAH + LV-NC group (n = 20), and SAH + LV-Panx1-EGFP group (n = 20). The rat SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. In SAH + LV-ShRNA-Panx1 group and SAH + LV-Panx1-EGFP group, lentivirus was administered via intracerebroventricular injection (i.c.v.) at 72 h before the induction of SAH. The Quantitative real-time polymerase chain reaction, electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were performed to explore the potential interactive mechanism between Pannexin-1 channels and TLR2/TLR4/NF-κB-mediated signaling pathway. Cognitive and memory changes were investigated by the Morris water maze test. Results: Administration with LV-ShRNA-Panx1 markedly decreased the expression levels of TLR2/4/NF-κB pathway-related agents in the brain cortex and significantly ameliorated neurological cognitive and memory deficits in this SAH model. On the contrary, administration of LV-Panx1-EGFP elevated the expressions of TLR2/4/NF-κB pathway-related agents, which correlated with augmented neuronal apoptosis. Conclusion: Pannexin-1 channels may contribute to inflammatory response and neurobehavioral dysfunction through the TLR2/TLR4/NF-κB-mediated pathway signaling after SAH, suggesting a potential role of Pannexin-1 channels could be a potential therapeutic target for the treatment of SAH.
Journal of the Neurological Sciences | 2016
Qiang Chen; Zhen-Nan Ye; Jing-Peng Liu; Zi-Huan Zhang; Chenhui Zhou; Ye Wang; Chun-Hua Hang
BACKGROUND Thrombospondin-1 (TSP-1) is a homotrimeric glycoprotein which modulates a wide range of biological functions. Elevated level of TSP-1 in plasma was reported to be correlated with intracerebral hemorrhage. Our study was designed to investigate the relationship between cerebrospinal fluid (CSF) TSP-1 levels and clinical outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS CSF TSP-1 levels were measured in 31 aSAH patients on days 1-3, days 5-7 and days 8-10 after aSAH onset using enzyme-linked immunosorbent assay. Patients were under a close follow-up until death or completion of three months after aSAH. Binary logistic regression analyses were performed to determine independent risk factors for the clinical outcomes. RESULTS TSP-1 levels peaked on days 1-3 after aSAH, kept up high on days 5-7 and remained elevated until days 8-10 (p<0.05). Significant elevation of CSF TSP-1 levels were found in patients both with and without vasospasm. Modified Rankin Scale at 3months after aSAH showed a significant correlation with CSF TSP-1 levels on days 1-3 and days 5-7 (both p<0.01). Binary logistic regression analysis showed that higher TSP-1 level on days 1-3 (p<0.05) and on days 5-7 (p<0.05) was a predictive marker of cerebrovasospasm and poor outcome of patient with aSAH. CONCLUSIONS Upregulation of TSP-1 may involve in the pathological process of aSAH and might be a risk factor of future adverse prognosis of aSAH.
International Journal of Molecular Medicine | 2018
Hua-Sheng Zhang; Dingding Zhang; Hua Li; Huiying Yan; Zi-Huan Zhang; Chenhui Zhou; Qiang Chen; Zhen-Nan Ye; Chun-Hua Hang
The transcription factor nuclear factor-κB (NF-κB) has been shown to function as a key regulator of cell death or survival in neuronal cells. Previous studies indicate that the biphasic activation of NF-κB occurs following experimental neonatal hypoxia-ischemia and subarachnoid hemorrhage. However, the comprehensive understanding of NF-κB activity following traumatic brain injury (TBI) is incomplete. In the current study, an in vitro model of TBI was designed to investigate the NF-κB activity and expression of p65 and c-Rel subunits following traumatic neuronal injury. Primary cultured neurons were assigned to control and transected groups. NF-κB activity was detected by electrophoretic mobility shift assay. Western blotting and immunofluorescence were used to investigate the expression and distribution of p65 and c-Rel. Reverse transcription-quantitative polymerase chain reaction was performed to assess the downstream genes of NF-κB. Lactate dehydrogenase (LDH) quantification and trypan blue staining were used to estimate the neuronal injury. Double peaks of elevated NF-κB activity were observed at 1 and 24 h following transection. The expression levels of downstream genes exhibited similar changes. The protein levels of p65 also presented double peaks while c-Rel was elevated significantly in the late stage. The results of the trypan blue staining and LDH leakage assays indicated there was no sustained neuronal injury during the late peak of NF-κB activity. In conclusion, biphasic activation of NF-κB is induced following experimental traumatic neuronal injury. The elevation of p65 and c-Rel levels at different time periods suggests that within a single neuron, NF-κB may participate in different pathophysiological processes.
Neurochemistry International | 2017
Hui Ding; Xiaoliang Wang; Handong Wang; Lin Zhu; Qiang Wang; Yue Jia; Wuting Wei; Chenhui Zhou; Heming Wu; Ke Ding
ABSTRACT The nuclear factor erythroid 2‐related factor 2 (Nrf2)‐antioxidant response element (ARE) pathway exhibits protective effects in a variety of neurological diseases. However, the role of this pathway in traumatic brain injury (TBI) is not fully understood. This study investigates whether the Nrf2‐ARE pathway provides neuroprotection following TBI via regulation of the ubiquitin proteasome system (UPS), and examines the involvement of this pathway in redox homeostasis. We found that activation the Nrf2‐ARE pathway can mitigate secondary brain injury induced by TBI. Furthermore, we found that inhibiting the Nrf2‐ARE pathway weakened the UPS following TBI. Treatment of TBI with the proteasome inhibitor, MG132, increased neuronal apoptosis, and evidence of brain water content was found. These data suggest that the Nrf2‐ARE pathway provides neuroprotection following TBI via modulation of the UPS. In addition, the results indicated that the content of glutathione (GSH) was significantly increased after activation of Nrf2, and the level of ROS decreased; however, this effect contradictory in the Nrf2 knockout mice. Further studies found that treatment with the ROS agonist, ferric ammonium citrate (FAC), resulted in additional damage exerted by the ubiquitin proteasome pathways, and a significant increase in the amount of ubiquitinated proteins. In contrast, the activity of the ubiquitin proteasome pathways was vastly enhanced, and the level of ubiquitination proteins was significantly decreased following treatment with the inhibitor, N‐acetylcysteine (NAC). The above mentioned results were also verified in in vitro experiments. In conclusion, the activation the Nrf2‐ARE pathway improves neurological impairment caused by TBI via modulation of the UPS, and the redox homeostasis is one of the vital regulatory mechanisms. HIGHLIGHTSWe use the gene knockout mice and administration of tBHQ as the two‐ways to regulate the Nrf2‐ARE signaling.Nrf2‐ARE pathway activation inhibits protin ubiquitination after TBI.Effect of proteasome inhibition on neuronal apoptosis and encephaledema after TBI is negated in Nrf2 mutants.We verify the hypothesis of Nrf2‐ARE regulate ubiquitin‐proteasome system through influence redox homeostasis.
Behavioural Neurology | 2018
Ling-Yun Wu; Zhen-Nan Ye; Zong Zhuang; Yongyue Gao; Chao Tang; Chenhui Zhou; Chun-xi Wang; Xiang-Sheng Zhang; Guang-bin Xie; Jing-Peng Liu; Mengliang Zhou; Chun-Hua Hang; Ji-Xin Shi
Inflammatory injury and neuronal apoptosis participate in the period of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Suppression of inflammation has recently been shown to reduce neuronal death and neurobehavioral dysfunction post SAH. Biochanin A (BCA), a natural bioactive isoflavonoid, has been confirmed to emerge the anti-inflammatory pharmacological function. This original study was aimed at evaluating and identifying the neuroprotective role of BCA and the underlying molecular mechanism in an experimental Sprague-Dawley rat SAH model. Neurobehavioral function was evaluated via the modified water maze test and modified Garcia neurologic score system. Thus, we confirmed that BCA markedly decreased the activated level of TLRs/TIRAP/MyD88/NF-κB pathway and the production of cytokines. BCA also significantly ameliorated neuronal apoptosis which correlated with the improvement of neurobehavioral dysfunction post SAH. These results indicated that BCA may provide neuroprotection against EBI through the inhibition of inflammatory injury and neuronal apoptosis partially via the TLRs/TIRAP/MyD88/NF-κB signal pathway.
Bioscience Reports | 2016
Zi-Huan Zhang; Yan-Ling Han; Chun-xi Wang; Chenhui Zhou; Ling-Yun Wu; Hua-Sheng Zhang; Qiang Chen; Jie-Mei Fan; Mengliang Zhou; Chun-Hua Hang
We found that more severe brain injury was caused by subarachnoid erythrocyte lysate, and inflammation associated with Prx2 might be involved in mechanism of brain injury.
Brain Research | 2015
Chenhui Zhou; Chun-xi Wang; Guang-bin Xie; Ling-Yun Wu; Yongxiang Wei; Qiang Wang; Hua-Sheng Zhang; Chun-Hua Hang; Mengliang Zhou; Ji-Xin Shi
Journal of Surgical Research | 2016
Yongyue Gao; Jie Li; Ling-Yun Wu; Chenhui Zhou; Qiang Wang; Xiang Li; Mengliang Zhou; Handong Wang