Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chenlong Li is active.

Publication


Featured researches published by Chenlong Li.


The Plant Cell | 2013

HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings.

Yi Zhou; Bin Tan; Ming Luo; Yin Li; Chen Liu; Chen Chen; Chun-Wei Yu; Songguang Yang; Shuai Dong; Jiuxiao Ruan; Liangbin Yuan; Zhou Zhang; Linmao Zhao; Chenlong Li; Huhui Chen; Yuhai Cui; Keqiang Wu; Shangzhi Huang

HDA19 interacts with HSL1 and together they negatively regulate seed maturation gene expression in vegetative organs, suggesting that epigenetic regulation is critical for seed development. This study provides insight into the molecular mechanism underlying the gene regulation in seed development. The seed maturation genes are specifically and highly expressed during late embryogenesis. In this work, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that HISTONE DEACETYLASE19 (HDA19) interacted with the HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2-LIKE1 (HSL1), and the zinc-finger CW [conserved Cys (C) and Trp (W) residues] domain of HSL1 was responsible for the interaction. Furthermore, we found that mutations in HDA19 resulted in the ectopic expression of seed maturation genes in seedlings, which was associated with increased levels of gene activation marks, such as Histone H3 acetylation (H3ac), Histone H4 acetylation (H4ac), and Histone H3 Lys 4 tri-methylation (H3K4me3), but decreased levels of the gene repression mark Histone H3 Lys 27 tri-methylation (H3K27me3) in the promoter and/or coding regions. In addition, elevated transcription of certain seed maturation genes was also found in the hsl1 mutant seedlings, which was also accompanied by the enrichment of gene activation marks but decreased levels of the gene repression mark. Chromatin immunoprecipitation assays showed that HDA19 could directly bind to the chromatin of the seed maturation genes. These results suggest that HDA19 and HSL1 may act together to repress seed maturation gene expression during germination. Further genetic analyses revealed that the homozygous hsl1 hda19 double mutants are embryonic lethal, suggesting that HDA19 and HSL1 may play a vital role during embryogenesis.


PLOS Genetics | 2015

The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP

Chenlong Li; Chen Chen; Lei Gao; Songguang Yang; Vi Nguyen; Xuejiang Shi; Katherine A. Siminovitch; Susanne E. Kohalmi; Shangzhi Huang; Keqiang Wu; Xuemei Chen; Yuhai Cui

The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.


Nature Genetics | 2016

Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis

Chenlong Li; Lianfeng Gu; Lei Gao; Chen Chen; Chuang-Qi Wei; Qi Qiu; Chih-Wei Chien; Suikang Wang; Lihua Jiang; Lian-Feng Ai; Chia-Yang Chen; Songguang Yang; Vi Nguyen; Yanhua Qi; Michael Snyder; Alma L. Burlingame; Susanne E. Kohalmi; Shangzhi Huang; Xiaofeng Cao; Zhi-Yong Wang; Keqiang Wu; Xuemei Chen; Yuhai Cui

SWI/SNF-type chromatin remodelers, such as BRAHMA (BRM), and H3K27 demethylases both have active roles in regulating gene expression at the chromatin level, but how they are recruited to specific genomic sites remains largely unknown. Here we show that RELATIVE OF EARLY FLOWERING 6 (REF6), a plant-unique H3K27 demethylase, targets genomic loci containing a CTCTGYTY motif via its zinc-finger (ZnF) domains and facilitates the recruitment of BRM. Genome-wide analyses showed that REF6 colocalizes with BRM at many genomic sites with the CTCTGYTY motif. Loss of REF6 results in decreased BRM occupancy at BRM–REF6 co-targets. Furthermore, REF6 directly binds to the CTCTGYTY motif in vitro, and deletion of the motif from a target gene renders it inaccessible to REF6 in vivo. Finally, we show that, when its ZnF domains are deleted, REF6 loses its genomic targeting ability. Thus, our work identifies a new genomic targeting mechanism for an H3K27 demethylase and demonstrates its key role in recruiting the BRM chromatin remodeler.


The Plant Cell | 2015

The Arabidopsis SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Targets Directly to PINs and Is Required for Root Stem Cell Niche Maintenance

Songguang Yang; Chenlong Li; Linmao Zhao; Sujuan Gao; Jingxia Lu; Minglei Zhao; Chia-Yang Chen; Xuncheng Liu; Ming Luo; Yuhai Cui; Chengwei Yang; Keqiang Wu

The Arabidopsis SWI/SNF chromatin-remodeling ATPase BRAHMA acts to maintain the stem cell niche in roots by modulating auxin distribution via regulation of the expression of PINs. BRAHMA (BRM), a SWI/SNF chromatin remodeling ATPase, is essential for the transcriptional reprogramming associated with development and cell differentiation in Arabidopsis thaliana. In this study, we show that loss-of-function mutations in BRM led to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth. Mutations of BRM affected auxin distribution by reducing local expression of several PIN-FORMED (PIN) genes in the stem cells and impaired the expression of the stem cell transcription factor genes PLETHORA (PLT1) and PLT2. Chromatin immunoprecipitation assays showed that BRM could directly target to the chromatin of PIN1, PIN2, PIN3, PIN4, and PIN7. In addition, genetic interaction assays indicate that PLTs acted downstream of BRM, and overexpression of PLT2 partially rescued the stem cell niche defect of brm mutants. Taken together, these results support the idea that BRM acts in the PLT pathway to maintain the root stem cell niche by altering the expression of PINs.


PLOS Genetics | 2015

Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture.

Minglei Zhao; Songguang Yang; Chia-Yang Chen; Chenlong Li; Wei Shan; Wang-jin Lu; Yuhai Cui; Xuncheng Liu; Keqiang Wu

BREVIPEDICELLUS (BP or KNAT1), a class-I KNOTTED1-like homeobox (KNOX) transcription factor in Arabidopsis thaliana, contributes to shaping the normal inflorescence architecture through negatively regulating other two class-I KNOX genes, KNAT2 and KNAT6. However, the molecular mechanism of BP-mediated transcription regulation remains unclear. In this study, we showed that BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) both in vitro and in vivo. Loss-of-function BRM mutants displayed inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes, a phenotype similar to the bp mutants. Furthermore, the transcript levels of KNAT2 and KNAT6 were elevated in brm-3, bp-9 and brm-3 bp-9 double mutants. Increased histone H3 lysine 4 tri-methylation (H3K4me3) levels were detected in brm-3, bp-9 and brm-3 bp-9 double mutants. Moreover, BRM and BP co-target to KNAT2 and KNAT6 genes, and BP is required for the binding of BRM to KNAT2 and KNAT6. Taken together, our results indicate that BP interacts with the chromatin remodeling factor BRM to regulate the expression of KNAT2 and KNAT6 in control of inflorescence architecture.


Journal of Experimental Botany | 2009

Regulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications

Chenlong Li; Keqiang Wu; Guohua Fu; Yin Li; Yujuan Zhong; Xiaodong Lin; Yi Zhou; Lining Tian; Shangzhi Huang

Nucleosome loss and histone modifications are important mechanisms for transcriptional regulation. Concomitant changes in chromatin structures of two peanut (Arachis hypogaea L.) oleosin genes, AhOleo17.8 and AhOleo18.5, were examined in relation to transcriptional activity. Spatial and temporal expression analyses showed that both AhOleo17.8 and AhOleo18.5 promoters can adopt three conformational states, an inactive state (in vegetative tissues), a basal activated state (in early maturation embryos), and a fully activated state (in late maturation embryos). Chromatin immunoprecipitation assays revealed an increase of histone H3 acetylation levels at the proximal promoters and coding regions of AhOleo17.8 and AhOleo18.5 associated with basal transcription in early maturation embryos. Meanwhile, a decrease of histone H3K9 dimethylation levels at coding regions of oleosins was observed in early maturation embryos. However, a dramatic decrease in the histone acetylation signal was observed at the core promoters and the coding regions of the two oleosins in the fully activated condition in late maturation embryos. Although a small decrease of histone H3 levels of oleosins chromatin was detected in early maturation embryos, a significant loss of histone H3 levels occurred in late maturation embryos. These analyses indicate that the histone eviction from the proximal promoters and coding regions is associated with the high expression of oleosin genes during late embryos maturation. Moreover, the basal expression of oleosins in early maturation embryos is accompanied by the increase of histone H3 acetylation and decrease of histone H3K9me2.


Planta | 2010

Epigenetic regulation of peanut allergen gene Ara h 3 in developing embryos.

Guohua Fu; Yujuan Zhong; Chenlong Li; Yin Li; Xiaodong Lin; Bin Liao; Edward W. T. Tsang; Keqiang Wu; Shangzhi Huang

Peanut (Arachis hypogaea) allergy is one of the most serious food allergies. Peanut seed protein, Ara h 3, is considered to be one of the most important peanut allergens. Little is known about the temporal and spatial regulation mechanism of Ara h 3 during seed development. In this study, chromatin structure of the Ara h 3 promoter was analyzed to examine its transcriptional regulation. Analysis of transgenic plants of Arabidopsis thaliana expressing Arah3: GUS showed that the Ara h 3 promoter could efficiently direct the seed-specific expression of the GUS reporter gene. Chromatin immunoprecipitation revealed that nucleosomes were depleted at the core promoter of the Ara h 3 upon full activation in the late stage of embryo maturation, which was accompanied by a dramatic decrease of histone acetylation. However, in the early stage of embryo maturation, histone H3 hyperacetylation at the core promoter of Ara h 3 was detected. A decrease of histone H3-K9 dimethylation levels at core promoter of Ara h 3 was also observed with concomitant repression of Ara h 3 in the vegetative tissues. Our results suggest that the histone modification status of Ara h 3 undergoes targeted changes including the increase of histone H3 acetylation and decrease of histone H3-K9 dimethylation in early maturation embryos. In addition, the loss of histone H3 from the proximal promoter of Ara h 3 is associated with its high expression during late embryo maturation.


Nature plants | 2017

Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis

Chen Chen; Chenlong Li; Ying Wang; Justin B. Renaud; Gang Tian; Shrikaar Kambhampati; Behnaz Saatian; Vi Nguyen; Abdelali Hannoufa; Frédéric Marsolais; Ze-Chun Yuan; Kangfu Yu; Ryan S. Austin; Jun Liu; Susanne E. Kohalmi; Keqiang Wu; Shangzhi Huang; Yuhai Cui

Acetyl-coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on adenosine triphosphate (ATP)-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants demonstrate the dynamic changes in H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants.It remains unknown how the central metabolite acetyl-CoA affects histone acetylation in plants. Chen et al. now show that cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis.


Plant Biotechnology Journal | 2018

Verification of DNA motifs in Arabidopsis using CRISPR/Cas9-mediated mutagenesis.

Chenlong Li; Chen Chen; Huhui Chen; Suikang Wang; Xuemei Chen; Yuhai Cui

Summary Transcription factors (TFs) and chromatin‐modifying factors (CMFs) access chromatin by recognizing specific DNA motifs in their target genes. Chromatin immunoprecipitation followed by next‐generation sequencing (ChIP‐seq) has been widely used to discover the potential DNA‐binding motifs for both TFs and CMFs. Yet, an in vivo method for verifying DNA motifs captured by ChIP‐seq is lacking in plants. Here, we describe the use of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated 9 (Cas9) to verify DNA motifs in their native genomic context in Arabidopsis. Using a single‐guide RNA (sgRNA) targeting the DNA motif bound by REF6, a DNA sequence‐specific H3K27 demethylase in plants, we generated stable transgenic plants where the motif was disrupted in a REF6 target gene. We also deleted a cluster of multiple motifs from another REF6 target gene using a pair of sgRNAs, targeting upstream and downstream regions of the cluster, respectively. We demonstrated that endogenous genes with motifs disrupted and/or deleted become inaccessible to REF6. This strategy should be widely applicable for in vivo verification of DNA motifs identified by ChIP‐seq in plants.


Nucleic Acids Research | 2018

The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes

Fu-Yu Hung; Fang-Fang Chen; Chenlong Li; Chen Chen; You-Cheng Lai; Jian-Hao Chen; Yuhai Cui; Keqiang Wu

Abstract In Arabidopsis, the circadian clock central oscillator genes are important cellular components to generate and maintain circadian rhythms. There is a negative feedback loop between the morning expressed CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and evening expressed TOC1 (TIMING OF CAB EXPRESSION 1). CCA1 and LHY negatively regulate the expression of TOC1, while TOC1 also binds to the promoters of CCA1 and LHY to repress their expression. Recent studies indicate that histone modifications play an important role in the regulation of the central oscillators. However, the regulatory relationship between histone modifications and the circadian clock genes remains largely unclear. In this study, we found that the Lysine-Specific Demethylase 1 (LSD1)-like histone demethylases, LDL1 and LDL2, can interact with CCA1/LHY to repress the expression of TOC1. ChIP-Seq analysis indicated that LDL1 targets a subset of genes involved in the circadian rhythm regulated by CCA1. Furthermore, LDL1 and LDL2 interact with the histone deacetylase HDA6 and co-regulate TOC1 by histone demetylation and deacetylaion. These results provide new insight into the molecular mechanism of how the circadian clock central oscillator genes are regulated through histone modifications.

Collaboration


Dive into the Chenlong Li's collaboration.

Top Co-Authors

Avatar

Keqiang Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yuhai Cui

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Chen

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Songguang Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yin Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Guohua Fu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne E. Kohalmi

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Vi Nguyen

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge