Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheol Soo Choi is active.

Publication


Featured researches published by Cheol Soo Choi.


Nature Medicine | 2007

Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals

Qian Gao; Gábor Mezei; Yongzhan Nie; Yan Rao; Cheol Soo Choi; Ingo Bechmann; Csaba Leranth; Dominique Toran-Allerand; Catherine A. Priest; James L. Roberts; Xiao-Bing Gao; Charles V. Mobbs; Gerald I. Shulman; Sabrina Diano; Tamas L. Horvath

Metabolic hormones, such as leptin, alter the input organization of hypothalamic circuits, resulting in increased pro-opiomelanocortin (POMC) tone, followed by decreased food intake and adiposity. The gonadal steroid estradiol can also reduce appetite and adiposity, and it influences synaptic plasticity. Here we report that estradiol (E2) triggers a robust increase in the number of excitatory inputs to POMC neurons in the arcuate nucleus of wild-type rats and mice. This rearrangement of synapses in the arcuate nucleus is leptin independent because it also occurred in leptin-deficient (ob/ob) and leptin receptor–deficient (db/db) mice, and was paralleled by decreased food intake and body weight gain as well as increased energy expenditure. However, estrogen-induced decrease in body weight was dependent on Stat3 activation in the brain. These observations support the notion that synaptic plasticity of arcuate nucleus feeding circuits is an inherent element in body weight regulation and offer alternative approaches to reducing adiposity under conditions of failed leptin receptor signaling.


Journal of Clinical Investigation | 2006

Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2

David B. Savage; Cheol Soo Choi; Varman T. Samuel; Zhen-Xiang Liu; Dongyan Zhang; Amy Wang; Xian-Man Zhang; Gary W. Cline; Xing Xian Yu; John G. Geisler; Sanjay Bhanot; Brett P. Monia; Gerald I. Shulman

Hepatic steatosis is a core feature of the metabolic syndrome and type 2 diabetes and leads to hepatic insulin resistance. Malonyl-CoA, generated by acetyl-CoA carboxylases 1 and 2 (Acc1 and Acc2), is a key regulator of both mitochondrial fatty acid oxidation and fat synthesis. We used a diet-induced rat model of nonalcoholic fatty liver disease (NAFLD) and hepatic insulin resistance to explore the impact of suppressing Acc1, Acc2, or both Acc1 and Acc2 on hepatic lipid levels and insulin sensitivity. While suppression of Acc1 or Acc2 expression with antisense oligonucleotides (ASOs) increased fat oxidation in rat hepatocytes, suppression of both enzymes with a single ASO was significantly more effective in promoting fat oxidation. Suppression of Acc1 also inhibited lipogenesis whereas Acc2 reduction had no effect on lipogenesis. In rats with NAFLD, suppression of both enzymes with a single ASO was required to significantly reduce hepatic malonyl-CoA levels in vivo, lower hepatic lipids (long-chain acyl-CoAs, diacylglycerol, and triglycerides), and improve hepatic insulin sensitivity. Plasma ketones were significantly elevated compared with controls in the fed state but not in the fasting state, indicating that lowering Acc1 and -2 expression increases hepatic fat oxidation specifically in the fed state. These studies suggest that pharmacological inhibition of Acc1 and -2 may be a novel approach in the treatment of NAFLD and hepatic insulin resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Continuous fat oxidation in acetyl–CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity

Cheol Soo Choi; David B. Savage; Lutfi Abu-Elheiga; Zhen-Xiang Liu; Sheene Kim; Ameya Kulkarni; Alberto Distefano; Yu-Jin Hwang; Richard M. Reznick; Roberto Codella; Dongyan Zhang; Gary W. Cline; Salih J. Wakil; Gerald I. Shulman

Acetyl–CoA carboxylase 2 (ACC)2 is a key regulator of mitochondrial fat oxidation. To examine the impact of ACC2 deletion on whole-body energy metabolism, we measured changes in substrate oxidation and total energy expenditure in Acc2−/− and WT control mice fed either regular or high-fat diets. To determine insulin action in vivo, we also measured whole-body insulin-stimulated liver and muscle glucose metabolism during a hyperinsulinemic–euglycemic clamp in Acc2−/− and WT control mice fed a high-fat diet. Contrary to previous studies that have suggested that increased fat oxidation might result in lower glucose oxidation, both fat and carbohydrate oxidation were simultaneously increased in Acc2−/− mice. This increase in both fat and carbohydrate oxidation resulted in an increase in total energy expenditure, reductions in fat and lean body mass and prevention from diet-induced obesity. Furthermore, Acc2−/− mice were protected from fat-induced peripheral and hepatic insulin resistance. These improvements in insulin-stimulated glucose metabolism were associated with reduced diacylglycerol content in muscle and liver, decreased PKCθ activity in muscle and PKCε activity in liver, and increased insulin-stimulated Akt2 activity in these tissues. Taken together with previous work demonstrating that Acc2−/− mice have a normal lifespan, these data suggest that Acc2 inhibition is a viable therapeutic option for the treatment of obesity and type 2 diabetes.


Journal of Clinical Investigation | 2007

Abnormal glucose homeostasis in skeletal muscle–specific PGC-1α knockout mice reveals skeletal muscle–pancreatic β cell crosstalk

Christoph Handschin; Cheol Soo Choi; Sherry Chin; Sheene Kim; Dan Kawamori; Amarnath J. Kurpad; Nicole Neubauer; Jiang Hu; Vamsi K. Mootha; Young-Bum Kim; Rohit N. Kulkarni; Gerald I. Shulman; Bruce M. Spiegelman

The transcriptional coactivator PPARgamma coactivator 1alpha (PGC-1alpha) is a strong activator of mitochondrial biogenesis and oxidative metabolism. While expression of PGC-1alpha and many of its mitochondrial target genes are decreased in the skeletal muscle of patients with type 2 diabetes, no causal relationship between decreased PGC-1alpha expression and abnormal glucose metabolism has been established. To address this question, we generated skeletal muscle-specific PGC-1alpha knockout mice (MKOs), which developed significantly impaired glucose tolerance but showed normal peripheral insulin sensitivity. Surprisingly, MKOs had expanded pancreatic beta cell mass, but markedly reduced plasma insulin levels, in both fed and fasted conditions. Muscle tissue from MKOs showed increased expression of several proinflammatory genes, and these mice also had elevated levels of the circulating IL-6. We further demonstrated that IL-6 treatment of isolated mouse islets suppressed glucose-stimulated insulin secretion. These data clearly illustrate a causal role for muscle PGC-1alpha in maintenance of glucose homeostasis and highlight an unexpected cytokine-mediated crosstalk between skeletal muscle and pancreatic islets.


Journal of Biological Chemistry | 2007

Suppression of Diacylglycerol Acyltransferase-2 (DGAT2), but Not DGAT1, with Antisense Oligonucleotides Reverses Diet-induced Hepatic Steatosis and Insulin Resistance

Cheol Soo Choi; David B. Savage; Ameya Kulkarni; Xing Xian Yu; Zhen-Xiang Liu; Katsutaro Morino; Sheene Kim; Alberto Distefano; Varman T. Samuel; Susanne Neschen; Dongyan Zhang; Amy Wang; Xian-Man Zhang; Mario Kahn; Gary W. Cline; Sanjay K. Pandey; John G. Geisler; Sanjay Bhanot; Brett P. Monia; Gerald I. Shulman

Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD. Dgat1 and Dgat2 ASO treatment selectively reduced DGAT1 and DGAT2 mRNA levels in liver and fat, but only Dgat2 ASO treatment significantly reduced hepatic lipids (diacylglycerol and triglyceride but not long chain acyl CoAs) and improved hepatic insulin sensitivity. Because Dgat catalyzes triglyceride synthesis from diacylglycerol, and because we have hypothesized that diacylglycerol accumulation triggers fat-induced hepatic insulin resistance through protein kinase Cϵ activation, we next sought to understand the paradoxical reduction in diacylglycerol in Dgat2 ASO-treated rats. Within 3 days of starting Dgat2 ASO therapy in high fat-fed rats, plasma fatty acids increased, whereas hepatic lysophosphatidic acid and diacylglycerol levels were similar to those of control rats. These changes were associated with reduced expression of lipogenic genes (SREBP1c, ACC1, SCD1, and mtGPAT) and increased expression of oxidative/thermogenic genes (CPT1 and UCP2). Taken together, these data suggest that knocking down Dgat2 protects against fat-induced hepatic insulin resistance by paradoxically lowering hepatic diacylglycerol content and protein kinase Cϵ activation through decreased SREBP1c-mediated lipogenesis and increased hepatic fatty acid oxidation.


Nature Medicine | 2008

Dual role of proapoptotic BAD in insulin secretion and beta cell survival

Nika N. Danial; Loren D. Walensky; Chen-Yu Zhang; Cheol Soo Choi; Jill K. Fisher; Anthony J A Molina; Sandeep Robert Datta; Kenneth Pitter; Gregory H. Bird; Jakob D. Wikstrom; J T Deeney; Kirsten Robertson; Joel Morash; Ameya Kulkarni; Susanne Neschen; Sheene Kim; Michael E. Greenberg; Barbara E. Corkey; Orian S. Shirihai; Gerald I. Shulman; Bradford B. Lowell; Stanley J. Korsmeyer

The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism

Cheol Soo Choi; Douglas E. Befroy; Roberto Codella; Sheene Kim; Richard M. Reznick; Yu-Jin Hwang; Zhen-Xiang Liu; Hui-Young Lee; Alberto Distefano; Varman T. Samuel; Dongyan Zhang; Gary W. Cline; Christoph Handschin; Jiandie Lin; Kitt Falk Petersen; Bruce M. Spiegelman; Gerald I. Shulman

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α has been shown to play critical roles in regulating mitochondria biogenesis, respiration, and muscle oxidative phenotype. Furthermore, reductions in the expression of PGC-1α in muscle have been implicated in the pathogenesis of type 2 diabetes. To determine the effect of increased muscle-specific PGC-1α expression on muscle mitochondrial function and glucose and lipid metabolism in vivo, we examined body composition, energy balance, and liver and muscle insulin sensitivity by hyperinsulinemic-euglycemic clamp studies and muscle energetics by using 31P magnetic resonance spectroscopy in transgenic mice. Increased expression of PGC-1α in muscle resulted in a 2.4-fold increase in mitochondrial density, which was associated with an ≈60% increase in the unidirectional rate of ATP synthesis. Surprisingly, there was no effect of increased muscle PGC-1α expression on whole-body energy expenditure, and PGC-1α transgenic mice were more prone to fat-induced insulin resistance because of decreased insulin-stimulated muscle glucose uptake. The reduced insulin-stimulated muscle glucose uptake could most likely be attributed to a relative increase in fatty acid delivery/triglyceride reesterfication, as reflected by increased expression of CD36, acyl-CoA:diacylglycerol acyltransferase1, and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase, that may have exceeded mitochondrial fatty acid oxidation, resulting in increased intracellular lipid accumulation and an increase in the membrane to cytosol diacylglycerol content. This, in turn, caused activation of PKCθ, decreased insulin signaling at the level of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and skeletal muscle insulin resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance

Dongyan Zhang; Zhen-Xiang Liu; Cheol Soo Choi; Liqun Tian; Richard G. Kibbey; Jianying Dong; Gary W. Cline; Philip A. Wood; Gerald I. Shulman

Alterations in mitochondrial function have been implicated in the pathogenesis of insulin resistance and type 2 diabetes. However, it is unclear whether the reduced mitochondrial function is a primary or acquired defect in this process. To determine whether primary defects in mitochondrial β-oxidation can cause insulin resistance, we studied mice with a deficiency of long-chain acyl-CoA dehydrogenase (LCAD), a key enzyme in mitochondrial fatty acid oxidation. Here, we show that LCAD knockout mice develop hepatic steatosis, which is associated with hepatic insulin resistance, as reflected by reduced insulin suppression of hepatic glucose production during a hyperinsulinemic-euglycemic clamp. The defects in insulin action were associated with an ≈40% reduction in insulin-stimulated insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity and an ≈50% decrease in Akt2 activation. These changes were associated with increased PKCε activity and an aberrant 4-fold increase in diacylglycerol content after insulin stimulation. The increase in diacylglycerol concentration was found to be caused by de novo synthesis of diacylglycerol from medium-chain acyl-CoA after insulin stimulation. These data demonstrate that primary defects in mitochondrial fatty acid oxidation capacity can lead to diacylglycerol accumulation, PKCε activation, and hepatic insulin resistance.


Journal of Clinical Investigation | 2007

Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

Cheol Soo Choi; Jonathan J. Fillmore; Jason K. Kim; Zhen-Xiang Liu; Sheene Kim; Emily F. Collier; Ameya Kulkarni; Alberto Distefano; Yu-Jin Hwang; Mario Kahn; Yan Chen; Chunli Yu; Irene K. Moore; Richard M. Reznick; Takamasa Higashimori; Gerald I. Shulman

Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCtheta in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1- (IRS-1-) and IRS-2-associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCtheta activity in whole-body fat-matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus.


Diabetes | 2006

Targeting Foxo1 in Mice Using Antisense Oligonucleotide Improves Hepatic and Peripheral Insulin Action

Varman T. Samuel; Cheol Soo Choi; Trevor G. Phillips; Anthony J. Romanelli; John G. Geisler; Sanjay Bhanot; Robert Mckay; Brett P. Monia; John R. Shutter; Richard Lindberg; Gerald I. Shulman; Murielle M. Véniant

Fasting hyperglycemia, a prominent finding in diabetes, is primarily due to increased gluconeogenesis. The transcription factor Foxo1 links insulin signaling to decreased transcription of PEPCK and glucose-6-phosphatase (G6Pase) and provides a possible therapeutic target in insulin-resistant states. Synthetic, optimized antisense oligonucleotides (ASOs) specifically inhibit Foxo1 expression. Here we show the effect of such therapy on insulin resistance in mice with diet-induced obesity (DIO). Reducing Foxo1 mRNA expression with ASO therapy in mouse hepatocytes decreased levels of Foxo1 protein and mRNA expression of PEPCK by 48 ± 4% and G6Pase by 64 ± 3%. In mice with DIO and insulin resistance, Foxo1 ASO therapy lowered plasma glucose concentration and the rate of basal endogenous glucose production. In addition, Foxo1 ASO therapy lowered both hepatic triglyceride and diacylglycerol content and improved hepatic insulin sensitivity. Foxo1 ASO also improved adipocyte insulin action. At a tissue-specific level, this manifested as improved insulin-mediated 2-deoxyglucose uptake and suppression of lipolysis. On a whole-body level, the result was improved glucose tolerance after an intraperitoneal glucose load and increased insulin-stimulated whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp. In conclusion, Foxo1 ASO therapy improved both hepatic insulin and peripheral insulin action. Foxo1 is a potential therapeutic target for improving insulin resistance.

Collaboration


Dive into the Cheol Soo Choi's collaboration.

Top Co-Authors

Avatar

Gerald I. Shulman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Bum Kim

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge