Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cher V. Masini is active.

Publication


Featured researches published by Cher V. Masini.


Brain Research | 2004

The pattern of brain c-fos mRNA induced by a component of fox odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), in rats, suggests both systemic and processive stress characteristics.

Heidi E.W. Day; Cher V. Masini; Serge Campeau

Predators to rodents and their associated odors are increasingly chosen to study the neural mechanisms of stress and anxiety. Specifically, predatory odors are believed to elicit responses based on the perceived threat (psychological or processive), rather than to any direct systemic effects (pain, blood loss, infection, etc.) of the stimulus, which are mediated by distinct neural pathways. The hypothesis that a chemical component from fox feces, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), elicits stress responses by specific activation of processive neural pathways was tested. Different amounts of TMT (range: 0-600 micromol) or the control odor butyric acid (0-1200 micromol) were presented to male Sprague-Dawley rats for 30 min. Immediately after odor presentation, rats were sacrificed, blood levels of adrenocorticotropic hormone (ACTH) and corticosterone were measured, and brains were rapidly harvested to measure regional brain c-fos mRNA induction by in situ hybridization. Presentation of TMT (> or =75 micromol), but not butyric acid (up to 1200 micromol), significantly increased ACTH and corticosterone release. TMT presentation, especially with amounts (> or =75 micromol) producing endocrine activation, induced c-fos mRNA in several brain areas, including the olfactory bulb, lateral septal nucleus, septohypothalamic nucleus, anteromedial and oval nuclei of the bed nucleus of the stria terminalis, the central nucleus of the amygdala, the anteroventral, anterodorsal, and medial preoptic nuclei, the anterior, dorsomedial, lateral, supramammillary, dorsal premammillary and paraventricular hypothalamic nuclei, the external lateral parabrachial nucleus, the locus coeruleus, and the nucleus of the solitary tract. Interestingly, these brain regions represent a mix of regional c-fos mRNA induction pattern not reported previously with any other single stressor. These results suggest that TMT elicits stress responses through a relatively unique and complex mix of brain regions associated with both processive and systemic neural pathways, unlike those seen in response to cat odors.


Neuroscience | 2007

Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear

Michael V. Baratta; John P. Christianson; D.M. Gomez; Christina Zarza; Jose Amat; Cher V. Masini; Linda R. Watkins; S.F. Maier

Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS.


Behavioral Neuroscience | 2005

Ferret Odor as a Processive Stress Model in Rats: Neurochemical, Behavioral, and Endocrine Evidence

Cher V. Masini; S. Sauer; Serge Campeau

Predator odors have been shown to elicit stress responses in rats. The present studies assessed the use of domestic ferret odor as a processive stress model. Plasma corticosterone and adrenocorticotropin hormone levels were higher after 30 min of exposure to ferret odor (fur/skin) but not control odors, ferret feces, urine, or anal gland secretions. Behavioral differences were also found between ferret and the control odors as tested in a defensive withdrawal paradigm. In addition, c-fos messenger RNA expression in several brain areas previously associated with processive stress was significantly higher in ferret odor-exposed rat brains than in control odor-exposed brains. These results suggest that ferret odor produces a reliable unconditioned stress response and may be useful as a processive stress model.


Journal of Neuroendocrinology | 2010

Hypothalamic Pituitary Adrenal Axis Responses to Low-Intensity Stressors are Reduced After Voluntary Wheel Running in Rats

Serge Campeau; Tara J. Nyhuis; Sarah K. Sasse; Elisa M. Kryskow; Lauren Herlihy; Cher V. Masini; Jessica A. Babb; Benjamin N. Greenwood; Monika Fleshner; Heidi E.W. Day

Regular physical exercise is beneficial for both physical and mental health. By contrast, stress is associated with deleterious effects on health and there is growing evidence that regular physical exercise counteracts some of the effects of stress. However, most previous studies have suggested that prior exercise does not alter the acute hypothalamic pituitary adrenal (HPA) axis responses to stress. The present series of studies provides evidence that in rats, 6 weeks (but not 1 or 3 weeks) of voluntary wheel running reduces the HPA axis responses to lower‐intensity stressors such as an i.p. saline injection, exposure to a novel environment or exposure to moderate intensity noise, but not to more intense stressors such as predator odour exposure or restraint. Daily exercise does not appear to be necessary for the reduction in HPA axis responses, with intermittent access (24 h out of each 72‐h period) to a running wheel for 6 weeks, resulting in similar decrements in adrenocorticotrophic hormone and corticosterone release in response to 85 dBA noise exposure. Data from in situ hybridisation for c‐fos mRNA are consistent with the hypothesis that voluntary exercise results in a decrease in HPA axis responsiveness to a low‐intensity stressor at a central level, with no changes in primary sensory processing. Together, these data suggest that 6 weeks of daily or intermittent exercise constrains the HPA axis response to mild, but not more intense stressors, and that this regulation may be mediated at a central level beyond the primary sensory input.


Stress | 2008

Chronic voluntary wheel running facilitates corticosterone response habituation to repeated audiogenic stress exposure in male rats

Sarah K. Sasse; Benjamin N. Greenwood; Cher V. Masini; Tara J. Nyhuis; Monika Fleshner; Heidi E.W. Day; Serge Campeau

Voluntary exercise is associated with the prevention and treatment of numerous physical and psychological illnesses, yet the mechanisms by which it confers this protection remain unclear. In contrast, stress, particularly under conditions of prolonged or repeated exposure when glucocorticoid levels are consistently elevated, can have a devastating impact on health. It has been suggested that the benefits of physical exercise may lie in an ability to reduce some of the more deleterious health effects of stress and stress hormones. The present series of experiments provides evidence that voluntary exercise facilitates habituation of corticosterone but not adrenocorticotropin hormone responses to repeated stress presentations. After 6 weeks of running wheel access or sedentary housing conditions, rats were exposed to 11 consecutive daily 30 min presentations of 98 dB noise stress. Similar corticosterone responses in exercised rats and sedentary controls were observed following the first, acute stress presentation. While both groups demonstrated habituation of corticosterone secretory responses with repeated noise stress exposures, the rate of habituation was significantly facilitated in exercised animals. These results suggest that voluntary exercise may reduce the negative impact of prolonged or repeated stress on health by enhancing habituation of the corticosterone response ultimately reducing the amount of glucocorticoids the body and brain are exposed to.


Neuroscience | 2013

Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic–pituitary–adrenocortical axis hormones following restraint in rats

Jessica A. Babb; Cher V. Masini; Heidi E.W. Day; Serge Campeau

Women may be more vulnerable to certain stress-related psychiatric illnesses than men due to differences in hypothalamic-pituitary-adrenocortical (HPA) axis function. To investigate potential sex differences in forebrain regions associated with HPA axis activation in rats, these experiments utilized acute exposure to a psychological stressor. Male and female rats in various stages of the estrous cycle were exposed to 30min of restraint, producing a robust HPA axis hormonal response in all animals, the magnitude of which was significantly higher in female rats. Although both male and female animals displayed equivalent c-fos expression in many brain regions known to be involved in the detection of threatening stimuli, three regions had significantly higher expression in females: the paraventricular nucleus of the hypothalamus (PVN), the anteroventral division of the bed nucleus of the stria terminalis (BSTav), and the medial preoptic area (MPOA). Dual fluorescence in situ hybridization analysis of neurons containing c-fos and corticotropin-releasing factor (CRF) mRNA in these regions revealed significantly more c-fos and CRF single-labeled neurons, as well as significantly more double-labeled neurons in females. Surprisingly, there was no effect of the estrous cycle on any measure analyzed, and an additional experiment revealed no demonstrable effect of estradiol replacement following ovariectomy on HPA axis hormone induction following stress. Taken together, these data suggest sex differences in HPA axis activation in response to perceived threat may be influenced by specific populations of CRF neurons in key stress-related brain regions, the BSTav, MPOA, and PVN, which may be independent of circulating sex steroids.


Behavioral Neuroscience | 2008

Long-term habituation to repeated loud noise is impaired by relatively short interstressor intervals in rats.

Cher V. Masini; Heidi E.W. Day; Serge Campeau

The phenomenon of spaced (longer intertrial interval) compared with massed (shorter intertrial interval) training leading to better long-term habituation and associative learning is well documented. However, the effects of intertrial intervals on response habituation to repeated stress exposures have not been previously examined. The present experiments found that massed (six 30-min exposures of 95 dB white noise in 6 hr) and spaced (one 30-min exposure daily for 6 days) noise exposures led to similar habituation of plasma corticosterone and ACTH responses, heart rate, and core body temperature after the 6th exposure in male Sprague-Dawley rats. However, these habituated responses were not retained in the massed group on a similar noise re-exposure 48 hr later, compared with the spaced group. The habituated responses found in the massed group after the 6 noise exposures were not due to differential hearing threshold shifts, as examined with modifications of the acoustic startle reflex. These data indicate that relatively short interstressor intervals impair long-term stress adaptation. This series of studies supports the idea of distinct short- and long-term habituation processes to stress responsiveness.


Endocrinology | 2009

Repeated ferret odor exposure induces different temporal patterns of same-stressor habituation and novel-stressor sensitization in both hypothalamic-pituitary-adrenal axis activity and forebrain c-fos expression in the rat

Marc S. Weinberg; Aadra P. Bhatt; Milena Girotti; Cher V. Masini; Heidi E.W. Day; Serge Campeau; Robert L. Spencer

Repeated exposure to a moderately intense stressor typically produces attenuation of the hypothalamic-pituitary-adrenal (HPA) axis response (habituation) on re-presentation of the same stressor; however, if a novel stressor is presented to the same animals, the HPA axis response may be augmented (sensitization). The extent to which this adaptation is also evident within neural activity patterns is unknown. This study tested whether repeated ferret odor (FO) exposure, a moderately intense psychological stressor for rats, leads to both same-stressor habituation and novel-stressor sensitization of the HPA axis response and neuronal activity as determined by immediate early gene induction (c-fos mRNA). Rats were presented with FO in their home cages for 30 min a day for up to 2 wk and subsequently challenged with FO or restraint. Rats displayed HPA axis activity habituation and widespread habituation of c-fos mRNA expression (in situ hybridization) throughout the brain in as few as three repeated presentations of FO. However, repeated FO exposure led to a more gradual development of sensitized HPA-axis and c-fos mRNA responses to restraint that were not fully evident until after 14 d of prior FO exposure. The sensitized response was evident in many of the same brain regions that displayed habituation, including primary sensory cortices and the prefrontal cortex. The shared spatial expression but distinct temporal development of habituation and sensitization neural response patterns suggests two independent processes with opposing influences across overlapping brain systems.


Neuroscience & Biobehavioral Reviews | 2008

Acute and chronic effects of ferret odor exposure in Sprague-Dawley rats

Serge Campeau; Tara J. Nyhuis; Sarah K. Sasse; Heidi E.W. Day; Cher V. Masini

This manuscript describes several behavioral and functional studies evaluating the capacity of ferret odors to elicit a number of acute and long-term responses in male Sprague-Dawley rats. Acute presentation elicits multiple responses, suggesting that ferret odor, likely from skin gland secretions, provides an anxiogenic-like stimulus in this strain of rats. Compared to cat odor, however, ferret odor did not produce rapid fear conditioning, a result perhaps attributable to methodological factors. Inactivation of the olfactory system and medial nucleus of the amygdala, combined with induction of the immediate-early gene c-fos, suggest the necessity of the accessory olfactory system in mediating the effects of ferret odor. Repeated exposures to ferret odor produce variable habituation of neuroendocrine and behavioral responses, perhaps indicative of the lack of control over the exact individual origin or concentration of ferret odor. Ferret odor induces rapid and long-term body weight regulation, thymic involution, adrenal hyperplasia and facilitation of the neuroendocrine response to additional challenges. It is argued that the use of such odors is exquisitely suited to investigate the brain regions coordinating anxiety-like responses and the long-term changes elicited by such stimuli.


Physiology & Behavior | 2006

Non-associative defensive responses of rats to ferret odor.

Cher V. Masini; S. Sauer; J. White; Heidi E.W. Day; Serge Campeau

Predators and their odors offer an ethologically valid model to study learning processes. The present series of experiments assessed the ability of ferret odor to serve as an unconditioned stimulus and examined behavioral and endocrine changes in male Sprague-Dawley rats with single or repeated exposures in a defensive withdrawal paradigm or in their home cages. Rats exposed to ferret odor avoided the ferret odor stimulus more, exhibited greater risk assessment and displayed higher adrenocorticotropin hormone (ACTH) and corticosterone release compared with control odor exposed rats and these measures did not significantly habituate over repeated exposures. Ferret odor exposure did not show associative conditioning effects during extinction trials. However, rats that were pre-exposed to ferret odor only once, as compared to control and repeatedly exposed rats, displayed a sensitized ACTH and corticosterone response to an additional ferret odor exposure in small cages. These experiments suggest that ferret odor is a highly potent unconditioned stimulus that has long lasting effects on behavior and endocrine responses, and further suggests the independence of habituation and sensitization processes.

Collaboration


Dive into the Cher V. Masini's collaboration.

Top Co-Authors

Avatar

Serge Campeau

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Heidi E.W. Day

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Tara J. Nyhuis

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Sarah K. Sasse

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jessica A. Babb

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Benjamin N. Greenwood

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Monika Fleshner

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Robert J. Garcia

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Robert L. Spencer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

S. Sauer

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge