Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheri L. Lamb is active.

Publication


Featured researches published by Cheri L. Lamb.


Cytokine & Growth Factor Reviews | 2011

Regulation of Hepatocyte Fate by Interferon-γ

Christopher J. Horras; Cheri L. Lamb; Kristen A. Mitchell

Interferon (IFN)-γ is a cytokine known for its immunomodulatory and anti-proliferative action. In the liver, IFN-γ can induce hepatocyte apoptosis or inhibit hepatocyte cell cycle progression. This article reviews recent mechanistic reports that describe how IFN-γ may direct the fate of hepatocytes either towards apoptosis or a cell cycle arrest. This review also describes a probable role for IFN-γ in modulating hepatocyte fate during liver regeneration, transplantation, hepatitis, fibrosis and hepatocellular carcinoma, and highlights promising areas of research that may lead to the development of IFN-γ as a therapy to enhance recovery from liver disease.


Toxicology | 2016

Exposure to 2,3,7,8-Tetrachlorodibenzo- p -Dioxin (TCDD) Increases Human Hepatic Stellate Cell Activation

Wendy Harvey; Kimberly Jurgensen; Xinzhu Pu; Cheri L. Lamb; Kenneth A. Cornell; Reilly Clark; Carolyn Klocke; Kristen A. Mitchell

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aromatic hydrocarbon that elicits toxicity through the aryl hydrocarbon receptor (AhR). In the liver, gross markers of TCDD toxicity are attributed to AhR activation in parenchymal hepatocytes. However, less is known regarding the consequences of TCDD treatment on non-parenchymal cells in the liver. Hepatic stellate cells (HSCs) are non-parenchymal cells that store vitamin A when quiescent. Upon liver injury, activated HSCs lose this storage ability and instead function in the development and maintenance of inflammation and fibrosis through the production of pro-inflammatory mediators and collagen type I. Reports that TCDD exposure disrupts hepatic retinoid homeostasis and dysregulates extracellular matrix remodeling in the liver led us to speculate that TCDD treatment may disrupt HSC activity. The human HSC line LX-2 was used to test the hypothesis that TCDD treatment directly activates HSCs. Results indicate that exposure to 10nM TCDD almost completely inhibited lipid droplet storage in LX-2 cells cultured with retinol and palmitic acid. TCDD treatment also increased LX-2 cell proliferation, expression of α-smooth muscle actin, and production of monocyte chemoattractant protein-1 (MCP-1), all of which are characteristics of activated HSCs. However, TCDD treatment had no effect on Col1a1 mRNA levels in LX-2 cells stimulated with the potent profibrogenic mediator, transforming growth factor-β. The TCDD-mediated increase in LX-2 cell proliferation, but not MCP-1 production, was abolished when phosphoinositide 3-kinase was inhibited. These results indicate that HSCs are susceptible to direct modulation by TCDD and that TCDD likely increases HSC activation through a multi-faceted mechanism.


BioMed Research International | 2016

Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes During Experimental Liver Fibrosis

Cheri L. Lamb; Giovan N. Cholico; Daniel E. Perkins; Michael T. Fewkes; Julia Thom Oxford; Trevor J. Lujan; Erica E. Morrill; Kristen A. Mitchell

The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury.


Journal of Immunotoxicology | 2012

Consequences of TCDD treatment on intra-hepatic lymphocytes during liver regeneration.

Christopher J. Horras; Cheri L. Lamb; Allie L. King; Jason R. Hanley; Kristen A. Mitchell

Increasing evidence demonstrates a physiological role for the aryl hydrocarbon receptor (AhR) in regulating hepatocyte cell cycle progression. Previous studies have used a murine model of liver regeneration to show that exposure to the potent exogenous AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), suppresses hepatocyte proliferation in vivo. Based on recent reports that natural killer (NK) cells negatively regulate liver regeneration, coupled with the well-established immunomodulatory effects of TCDD, it was hypothesized that alterations in lymphocyte activation contribute to the suppression of liver regeneration in TCDD-treated mice. To test this, mice were treated with TCDD (20 μg/kg) 1 day prior to 70% partial hepatectomy (PH), in which two-thirds of the liver was surgically resected. Lymphocytes were collected from the remnant liver and analyzed by flow cytometry. Whereas exposure to TCDD did not alter the number of NK cells or CD3+ T-cells recovered from the regenerating liver, it reduced the percentage and number of intra-hepatic NKT cells 42 h after PH. With regard to lymphocyte activation, TCDD treatment transiently increased CD69 expression on NK and NKT cells 12 h after PH, but had no effect on intracellular levels of IFNγ in NK, NKT, or CD3+ T-cells. To determine the relevance of NK cells to the suppression of liver regeneration by TCDD, mice were treated with anti-Asialo GM-1 (ASGM-1) antibody to deplete NK cells prior to TCDD treatment and PH, and hepatocyte proliferation was measured using bromodeoxyuridine incorporation. Exposure to TCDD was found to inhibit hepatocyte proliferation in the regenerating liver of NK cell-depleted mice and control mice to the same extent. Hence, it is unlikely that enhanced numbers or increased activation of NK cells contribute to the suppression of liver regeneration in TCDD-treated mice.


Toxicology and Applied Pharmacology | 2016

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice

Cheri L. Lamb; Giovan N. Cholico; Xinzhu Pu; Gerald D. Hagler; Kenneth A. Cornell; Kristen A. Mitchell

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant and high-affinity ligand for the aryl hydrocarbon receptor (AhR). Increasing evidence indicates that AhR signaling contributes to wound healing, which involves the coordinated deposition and remodeling of the extracellular matrix. In the liver, wound healing is attributed to the activation of hepatic stellate cells (HSCs), which mediate fibrogenesis through the production of soluble mediators and collagen type I. We recently reported that TCDD treatment increases the activation of human HSCs in vitro. The goal of this study was to determine how TCDD impacts HSC activation in vivo using a mouse model of experimental liver fibrosis. To elicit fibrosis, C57BL6/male mice were treated twice weekly for 8weeks with 0.5ml/kg carbon tetrachloride (CCl4). TCDD (20μg/kg) or peanut oil (vehicle) was administered once a week during the last 2weeks. Results indicate that TCDD increased liver-body-weight ratios, serum alanine aminotransferase activity, and hepatic necroinflammation in CCl4-treated mice. Likewise, TCDD treatment increased mRNA expression of HSC activation and fibrogenesis genes, namely α-smooth muscle actin, desmin, delta-like homolog-1, TGF-β1, and collagen type I. However, TCDD treatment did not exacerbate fibrosis, nor did it increase the collagen content of the liver. Instead, TCDD increased hepatic collagenase activity and increased expression of matrix metalloproteinase (MMP)-13 and the matrix regulatory proteins, TIMP-1 and PAI-1. These results support the conclusion that TCDD increases CCl4-induced liver damage and exacerbates HSC activation, yet collagen deposition and the development of fibrosis may be limited by TCDD-mediated changes in extracellular matrix remodeling.


Journal of Inflammation | 2016

Monocyte chemoattractant protein-1 is not required for liver regeneration after partial hepatectomy

Stephanie L. Wyler; Shawna L. D’Ingillo; Cheri L. Lamb; Kristen A. Mitchell


Archive | 2015

Consequences of TCDD Treatment on miRNA Expression During Experimental Liver Fibrosis

Cody Gowan; Wendy Harvey; Cheri L. Lamb; Kristen A. Mitchell


Archive | 2014

TCDD Treatment Enhances Hepatic Stellate Cell Activation During Experimental Liver Fibrosis

Cheri L. Lamb; Wendy Harvey; Kristen A. Mitchell


The FASEB Journal | 2011

Monocyte chemoattractant protein (MCP)-1 is not required for Kupffer cell activation after partial hepatectomy

Stephanie L. Wyler; Dietric L Hennings; Shawna R D'Ingillo; Cheri L. Lamb; Christopher J. Horras; Kristen A. Mitchell


Archive | 2010

Transfection of Luciferase Gene into 5L Cells to Monitor STAT Activation

Andria Wellman; Christie Hammons; Robert Cox; Stephanie Saylor; Cheri L. Lamb; Ken Cornell; Henry Charlier; Kristen A. Mitchell

Collaboration


Dive into the Cheri L. Lamb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinzhu Pu

Boise State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge