Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheri Lubahn is active.

Publication


Featured researches published by Cheri Lubahn.


Neuroimmunomodulation | 2006

Bidirectional communication between the brain and the immune system: implications for physiological sleep and disorders with disrupted sleep.

Dianne Lorton; Cheri Lubahn; Chris Estus; Brooke A. Millar; Jeffery L. Carter; Carlo Wood; Denise L. Bellinger

This review describes mechanisms of immune-to-brain and brain-to-immune signaling involved in mediating physiological sleep and altered sleep with disease. The central nervous system (CNS) modulates immune function by signaling target cells of the immune system through autonomic and neuroendocrine pathways. Neurotransmitters and hormones produced and released by these pathways interact with immune cells to alter immune functions, including cytokine production. Cytokines produced by cells of the immune and nervous systems regulate sleep. Cytokines released by immune cells, particularly interleukin-1β and tumor necrosis factor-α, signal neuroendocrine, autonomic, limbic and cortical areas of the CNS to affect neural activity and modify behaviors (including sleep), hormone release and autonomic function. In this manner, immune cells function as a sense organ, informing the CNS of peripheral events related to infection and injury. Equally important, homeostatic mechanisms, involving all levels of the neuroaxis, are needed, not only to turn off the immune response after a pathogen is cleared or tissue repair is completed, but also to restore and regulate natural diurnal fluctuations in cytokine production and sleep. The immune system’s ability to affect behavior has important implications for understanding normal and pathological sleep. Sleep disorders are commonly associated with chronic inflammatory diseases and chronic age- or stress-related disorders. The best studied are rheumatoid arthritis, fibromyalgia and chronic fatigue syndromes. This article reviews our current understanding of neuroimmune interactions in normal sleep and sleep deprivation, and the influence of these interactions on selected disorders characterized by pathological sleep.


Journal of Immunotoxicology | 2008

Retracted: Maternal and early life stress effects on immune function: relevance to immunotoxicology

Denise L. Bellinger; Cheri Lubahn; Dianne Lorton

RETRACTED


Brain Behavior and Immunity | 1999

Dual Role for Noradrenergic Innervation of Lymphoid Tissue and Arthritic Joints in Adjuvant-Induced Arthritis

Dianne Lorton; Cheri Lubahn; Nathan Klein; Jill A. Schaller; Denise L. Bellinger

The role of noradrenergic innervation in the disease outcome of adjuvant-induced arthritis (AA) has been examined following (1) systemic administration of guanethidine and (2) local application of 6-hydroxydopamine (6-OHDA) into the lymph nodes that drain the hind limbs (DLN). Sympathetic denervation by these different neurotoxins produced directionally opposite effects on disease outcome. These conflicting findings could be explained from differential denervation of sympathetic nerves in key target tissues that result from different routes of neurotoxin administration. Alternatively, these conflicting data could be due to differences in the mechanisms by which guanethidine and 6-OHDA destroy sympathetic nerve terminals. In this study, we compared disease outcome in AA following systemic and local DLN application of 6-OHDA to determine whether the route of administration is important to the development and progression of AA. Bilateral local DLN application of 6-OHDA or vehicle was performed 1 day before injection of Freunds complete adjuvant (CFA) to induce arthritis. For systemic denervation, 6-OHDA or vehicle was given by ip injections on days 1, 3, and 5 prior to CFA challenge and then once a week. Local DLN application of 6-OHDA resulted in significant increases in dorsoplantar width in arthritic rats by 27 days following CFA treatment compared to those of non-denervated arthritic rats. In contrast, systemic denervation in arthritic rats significantly decreased dorsoplantar widths 27 days after CFA treatment compared to those in sympathetically intact arthritic animals. X-ray analysis confirmed these findings. Further, local DLN application of 6-OHDA exacerbated the disease regardless of whether the neurotoxin was administered prior to immunization with CFA or closer to the time of disease onset. Our findings indicate that the route of 6-OHDA administration for denervation of sympathetic innervation is an important parameter in determining disease outcome, presumably due to differential sympathetic denervation of target tissues that are involved in disease development and progression. 6-OHDA administration into local DLN denervated these lymph nodes, but spared sympathetic innervation of the hind limbs, a pattern of sympathetic denervation that resulted in disease exacerbation. In contrast, systemic 6-OHDA administration which denervated both the arthritic joints and the secondary lymphoid organs attenuated the severity of AA. This study supports a dual role for NA innervation in modulating the severity of AA by innervation of the arthritic joints and lymphoid organs.


Brain Behavior and Immunity | 2004

The importance of timing of adrenergic drug delivery in relation to the induction and onset of adjuvant-induced arthritis.

Cheri Lubahn; Jill A. Schaller; Denise L. Bellinger; Sarah Sweeney; Dianne Lorton

Stressful events often precede onset and exacerbate established rheumatic diseases. There are numerous reports of abnormal autonomic function in rheumatoid arthritis (RA) patients. Targeting the sympathetic nervous system (SNS) with adrenergic receptor (AR) drugs in RA patients and animal models of the disease have revealed mixed results, with treatments inhibiting and exacerbating disease pathology. We tested the hypothesis that variability in disease outcome following adrenergic drug treatment is due to different roles played by the SNS at different disease stages. The contribution of beta2- and alpha-AR subtypes to disease pathology was studied at different disease stages in adjuvant-induced arthritis (AA), an animal model of RA. Lewis rats were given twice-daily intraperitoneal (i.p.) injections of an alpha-AR antagonist (phentolamine: 500 microg/kg) or a beta2-AR agonist (terbutaline: 1200 microg/day), initiated at adjuvant challenge or disease onset, and continued through severe disease. Both adrenergic therapies, when initiated at adjuvant challenge exacerbated disease pathology. In contrast, SH1293, an adrenergic drug that targets both alpha- and beta-AR (300 microg/day; twice-daily), initiated at adjuvant challenge did not exacerbate disease severity. Additionally, the same treatment regimen of phentolamine, terbutaline or SH1293 initiated at disease onset attenuated joint-inflammation and dramatically reduced bone destruction in the arthritic hind limbs. These data support the SNS playing different roles in disease pathology preclinically and after disease onset. Given current drug therapies are not effective in preventing bone destruction, these data support using adrenergic drugs as bone sparing treatments in RA.


Neuroimmunomodulation | 2000

Local Application of Capsaicin into the Draining Lymph Nodes Attenuates Expression of Adjuvant-Induced Arthritis

Dianne Lorton; Cheri Lubahn; Chad Engan; Jill A. Schaller; David L. Felten; Denise L. Bellinger

Adjuvant-induced experimental arthritis (AA) was examined in adult male Lewis rats after isolated capsaicin (CAPS)-induced loss of small, nonmyelinated, afferent fibers in lymph nodes draining the site of adjuvant challenge. AA was induced by intradermal injection of Freund’s complete adjuvant (CFA) into the subplantar area of the right hind paw. Controls received similar injections of mineral oil, the vehicle for CFA. One day later, half of the CFA-treated rats and half of the mineral oil-treated rats received injections of CAPS bilaterally into the draining lymph nodes (DLN). The DLN of remaining rats were injected with 50:50 ethanol/sterile physiological saline, the vehicle for CAPS. This paradigm resulted in four groups designated: CFA/CAPS, CFA/vehicle, vehicle/CAPS and vehicle/vehicle. Since substance P (SP) is present in small, nonmyelinated, afferent fibers, the target of the neurotoxin, CAPS, a radioimmunoassay specific for SP was used to verify the loss of these nerve fibers. CAPS injections into the DLN resulted in a loss in SP concentration in the DLN, with no depletion of SP in the spleen or sciatic nerve. These findings support the destruction of SP-containing nerves, which we interpret as verification of the selective loss of small, non-myelinated afferent nerves in the DLN with no significant spread of the neurotoxin to the nearby sciatic nerves which supply small, nonmyelinated, afferent fibers to the hind limb joints. Also, preservation of SP content in spleen indicates CAPS did not circulate via the lymphatic drainage. No chronic inflammation was observed in the fore or hind limbs from rats treated with the vehicle for CFA (vehicle/vehicle, vehicle/CAPS) at any time during the study. In CFA/vehicle-treated rats, bilateral, symmetrical inflammation of the hind limbs was apparent 14 days after challenge with CFA, and became progressively more inflamed through day 20. In contrast, hind limb inflammation in arthritic rats treated with CAPS was not symmetrical. On days 14 and 20 after challenge with CFA, the inflammatory response in the left hind limb, contralateral to the site of CFA injection, was significantly (p < 0.05) attenuated compared with the response seen on the right side of CFA/CAPS-treated rats, and with the response seen in left hind limb of CFA/vehicle-treated animals. In fact, the mean dorsoplantar width of contralateral hind limbs from CFA/CAPS-treated animals was not different from that measured in non-AA control groups. These findings support a role for small, nonmyelinated, sensory nerves that modulate immune responses in DLN in the development and progression of AA in Lewis rats.


Mechanisms of Ageing and Development | 1997

Norepinephrine content in primary and secondary lymphoid organs is altered in rats with adjuvant-induced arthritis

Dianne Lorton; Cheri Lubahn; Suzanne Y. Felten; Denise L. Bellinger

Chemical sympathectomy of secondary lymphoid organs with sparing of the hind limbs exacerbates adjuvant-induced arthritis (AA) in Lewis rats supporting a role for noradrenergic (NA) innervation of the immune system in AA pathology. The present study examines sympathetic innervation of lymphoid organs from Lewis rats 32 days after treatment with complete Freunds adjuvant (CFA) or vehicle using fluorescence histochemistry for localization of catecholamines (CA) and high-performance liquid chromatography with electrochemical detection (LCEC) for measurement for norepinephrine. The thymus from AA rats was significantly reduced in size, while secondary lymphoid organs, i.e., spleen and draining lymph nodes (DLN), were significantly enlarged compared with that seen in vehicle-treated controls. Fluorescence histochemistry revealed no apparent differences in the density of NA innervation, or the intensity of staining in sympathetic nerves in any of the secondary lymphoid organs from AA rats compared with that observed in control animals. However, there was an apparent increase in the density of NA nerve fibers in the thymus of AA rats. Norepinephrine (NE) concentration (pmol NE per g or mg wet weight), in the thymus from AA rats was significantly increased. Conversely, a significant decrease in splenic and lymph node NE concentration was measured in adjuvant-treated animals compared with that seen in vehicle-treated rats. Total NE content (pmol NE per whole organ weight) in lymphoid organs was not altered, except in popliteal lymph nodes (PLN), where it was increased. Collectively, our findings suggest that changes in NA innervation of lymphoid organs from AA rats result largely from increases or decreases in organ mass. Since NE released from NA nerves acts in a paracrine fashion, changes in lymphoid tissue volume that result from enhanced proliferation, migration, or cell death can make a significant difference in the availability of NE for interaction with immune target cells in these organs, even in the absence of a change in NE metabolism. Decreased thymic weight and increased spleen and lymph node weight should increase and decrease NE availability for interaction with target cells, respectively. Additionally, in PLN (a site where the highest concentration of antigen is encountered) an increase in total NE content suggests compensatory changes in NE metabolism.


Brain Behavior and Immunity | 2009

Differences in the injury/sprouting response of splenic noradrenergic nerves in Lewis rats with adjuvant-induced arthritis compared with rats treated with 6-hydroxydopamine.

Dianne Lorton; Cheri Lubahn; Sarah Sweeney; Amy Major; Carl A. Lindquist; Jill A. Schaller; Cathy Washington; Denise L. Bellinger

Sympathetic nerves in the spleen undergo an injury and sprouting response with development of adjuvant-induced arthritis (AA), a model of rheumatoid arthritis (RA). The objective of the present study was to determine whether this injury and sprouting response is disease-specific or occurs in a non-specific manner similar to injury and sprouting responses following sympathectomy with specific neurotoxins. Changes in noradrenergic (NA) innervation in spleens from Lewis rats 28 days following adjuvant treatment to induce arthritis and/or local 6-hydroxydopamine (6-OHDA) treatment to destroy NA nerves were examined using immunocytochemistry for tyrosine hydroxylase (TH). We observed significant increases in sympathetic innervation of hilar regions, sites of nerve entry into the spleen, and a striking decline in innervation of splenic regions distant to the hilus in arthritic compared to non-arthritic rats. While increased hilar and decreased distal NA innervation in arthritic rats was strikingly similar to that of non-arthritic 6-OHDA-treated rats, there were differences in splenic compartments innervated by sympathetic nerves between these groups. In 6-OHDA-treated rats, NA nerves re-innervated splenic compartments normally innervated by sympathetic nerves. In arthritic rats, sympathetic nerves returned to normally innervated splenic compartments, but also abundantly innervated red pulp. These findings suggest that splenic sympathetic nerves undergo a disease-associated injury/sprouting response with disease development that alters the normal pattern and distribution of NA innervation. The altered sympathetic innervation pattern is likely to change NA signaling to immune cell targets, which could exert long-term regulatory influences on initiation, maintenance, and resolution of immune responses that impact disease pathology.


The Journal of Comparative Neurology | 2005

Changes in the density and distribution of sympathetic nerves in spleens from Lewis rats with adjuvant-induced arthritis suggest that an injury and sprouting response occurs

Dianne Lorton; Cheri Lubahn; Carl A. Lindquist; Jill A. Schaller; Cathy Washington; Denise L. Bellinger

Previously we demonstrated reduced norepinephrine concentrations in spleens from Lewis rats with adjuvant‐induced arthritis (AA), an animal model of rheumatoid arthritis. This study extends these findings, examining the anatomical localization and density of sympathetic nerves in the spleen with disease development. Noradrenergic (NA) innervation in spleens of Lewis rats was examined 28 days following adjuvant treatment to induce arthritis or vehicle for the adjuvant by using fluorescence histochemistry for catecholamines, with morphometric analysis and immunocytochemistry for tyrosine hydroxylase. In AA rats, sympathetic nerve density in the hilar regions, where NA nerves enter the spleen, was increased twofold over that observed in vehicle‐treated rats. In contrast, there was a striking twofold decline in the density of NA nerves in splenic regions distal to the hilus in arthritic rats compared with nonarthritic rats. In both treatment groups, NA nerves distributed to central arterioles, white pulp regions, trabeculae, and capsule. However, NA nerve density was reduced in the white pulp but was increased in the red pulp in AA rats compared with non‐AA rats. These findings indicate an injury/sprouting response with disease development whereby NA nerves die back in distal regions and undergo a compensatory sprouting response in the hilus. The redistribution of NA nerves from white pulp to red pulp suggests that these nerves signal activated immune cells localized in the red pulp in AA. Although the mechanisms of this redistribution of NA nerves into the red pulp are not known, it may be due to migration from white pulp to red pulp of target immune cells that provide trophic support for these nerves. The redistribution of NA nerves into the red pulp may be critical in modulating immune functions that contribute to the chronic inflammatory stages of arthritis. J. Comp. Neurol. 489:260–273, 2005.


Current Pharmaceutical Design | 2008

Proinflammatory Cytokines and Sickness Behavior in Rheumatic Diseases

Dianne Lorton; Cheri Lubahn; Alex J. Zautra; Denise L. Bellinger

This review describes mechanisms of immune-to-brain signaling that may contribute to disease-related changes in mood, affect and behavior in chronic inflammatory rheumatic diseases. The central nervous system (CNS) modulates immune function by signaling target cells of the immune system through autonomic and neuroendocrine pathways. These immune cells relay information back to autonomic, limbic and cortical areas of the CNS to affect neural activity and consequently modify behavior, hormone release and autonomic function. In this manner, immune cells function as a sense organ, informing the CNS of peripheral events relating to infection and injury. Equally important, homeostatic mechanisms are needed at all levels to turn off the immune response when the pathogen and injurious condition are eliminated and the repair process is completed. In individuals with chronic inflammatory diseases, such as rheumatoid arthritis (RA), there is a failure of the homeostatic regulation leading to long-term immune activation that has serious health consequences. Rheumatic disorders constitute a challenge to major psychological adaptation resources leading to higher rates of psychological disorders compared with the general population. Thus the relationship between disease pathology and psychological well being is complex.


Brain Behavior and Immunity | 2002

Age-Related Changes in Noradrenergic Sympathetic Innervation of the Rat Spleen Is Strain Dependent

Denise L. Bellinger; Lily Tran; Joey I. Kang; Cheri Lubahn; David L. Felten; Dianne Lorton

Previous findings from our laboratory revealed an age-related decline in noradrenergic (NA) sympathetic innervation of the spleen in male Fischer 344 (F344) rats. The purpose of this study was to determine whether other rat strains also progressively lose NA sympathetic nerves in the aging spleen. Sympathetic innervation of spleens from 3- and 21-month-old male F344, Brown Norway (BN), BN X F344 (BNF(1)), and Lewis rats was examined using fluorescence histochemistry to localize catecholamines combined with morphometric analysis and using high-performance liquid chromatography with electrochemical detection for measuring norepinephrine (NE). Neurochemistry revealed a significant age-related decline in NE concentrations in spleens from F344 and Lewis rats. In contrast, there was no effect of age on splenic NE concentrations in BN or BNF(1) rats. Consistent with neurochemical analysis, fluorescence histochemistry revealed a striking decline in NA innervation of spleens from old F344 and Lewis rats not observed in the other two strains. However, in BN and BNF(1) rats, nerve fibers were diminished in distal portions of the spleen but not in the hilar regions. Morphometric analysis confirmed neurochemical and histological findings, revealing approximately 65-70% loss in NA nerve density in spleens from F344 and Lewis rats. These findings indicate that age-related changes in sympathetic innervation of the rat spleen are strain-dependent. Whether the loss of sympathetic nerves in spleens from F344 and Lewis rats is associated with age-related changes in the splenic microenvironment remains to be determined. The functional significance of altered sympathetic innervation of the spleen with advancing age is discussed.

Collaboration


Dive into the Cheri Lubahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Perez

Loma Linda University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge