Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cherie A. Singer is active.

Publication


Featured researches published by Cherie A. Singer.


American Journal of Respiratory Cell and Molecular Biology | 2010

MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype.

Andrew R. Kuhn; Karen Schlauch; Ronna Lao; Andrew J. Halayko; William T. Gerthoffer; Cherie A. Singer

Defining mechanisms by which differentiated, contractile smooth muscle cells become proliferative and secretory in response to mechanical and environmental stress is crucial for determining the contribution of airway smooth muscle (ASM) to inflammatory responses that result in airway disease. Regulation by microRNAs (miRNAs) has emerged as an important post-transcriptional mechanism regulating gene expression that may modulate ASM phenotype, but little is known about the expression and functions of miRNA in smooth muscle. In the present study we used microarrays to determine whether miRNAs in human ASM cells are altered by a proinflammatory stimulus. In ASM cells exposed to IL-1beta, TNF-alpha, and IFN-gamma, we found 11 miRNAs to be significantly down-regulated. We verified decreased expression of miR-25, miR-140*, mir-188, and miR-320 by quantitative PCR. Analysis of miR-25 expression indicates that it has a broad role in regulating ASM phenotype by modulating expression of inflammatory mediators such as RANTES, eotaxin, and TNF-alpha; genes involved in extracellular matrix turnover; and contractile proteins, most notably myosin heavy chain. miRNA binding algorithms predict that miR-25 targets Krüppel-like factor 4 (KLF4), a potent inhibitor of smooth muscle-specific gene expression and mediator of inflammation. Our study demonstrates that inhibition of miR-25 in cytokine-stimulated ASM cells up-regulates KLF4 expression via a post-transcriptional mechanism. This provides novel evidence that miR-25 targets KLF4 in ASM cells and proposes that miR-25 may be an important mediator of ASM phenotype.


The Journal of Physiology | 2009

TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells

Lih Chyuan Ng; Mary D. McCormack; Judith A. Airey; Cherie A. Singer; Phillip S. Keller; Xiao-Ming Shen; Joseph R. Hume

Previous studies in pulmonary arterial smooth muscle cells (PASMCs) showed that the TRPC1 channel mediates capacitative Ca2+ entry (CCE), but the molecular signal(s) that activate TRPC1 in PASMCs remains unknown. The aim of the present study was to determine if TRPC1 mediates CCE through activation of STIM1 protein in mouse PASMCs. In primary cultured mouse PASMCs loaded with fura‐2, cyclopiazonic acid (CPA) caused a transient followed by a sustained rise in intracellular Ca2+ concentration ([Ca2+]i). The transient but not the sustained rise in [Ca2+]i was partially inhibited by nifedipine. In addition, CPA increased the rate of Mn2+ quench of fura‐2 fluorescence that was inhibited by SKF 96365, Ni2+, La3+ and Gd3+, exhibiting pharmacological properties characteristic of CCE. The nifedipine‐insensitive sustained rise in [Ca2+]i and the increase in Mn2+ quench of fura‐2 fluorescence caused by CPA were both inhibited in cells pretreated with antibody raised against an extracellular epitope of TRPC1. Moreover, STIM1 siRNA reduced the rise in [Ca2+]i and Mn2+ quench of fura‐2 fluorescence caused by CPA, whereas overexpression of STIM1 resulted in a marked increase in these responses. RT‐PCR revealed TRPC1 and STIM1 mRNAs, and Western blot analysis identified TRPC1 and STIM1 proteins in mouse PASMCs. Furthermore, TRPC1 was found to co‐immunoprecipitate with STIM1, and the precipitation level of TRPC1 was increased in cells subjected to store depletion. Taken together, store depletion causes activation of voltage‐operated Ca2+ entry and CCE. These data provide direct evidence that CCE is mediated by TRPC1 channel through activation of STIM1 in mouse PASMCs.


American Journal of Physiology-cell Physiology | 2010

Expression profile and protein translation of TMEM16A in murine smooth muscle

Alison J. Davis; Abigail S. Forrest; Thomas A. Jepps; Maria L. Valencik; Michael Wiwchar; Cherie A. Singer; William Sones; Iain A. Greenwood; Normand Leblanc

Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipette solution containing 500 nM Ca(2+) in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle. Western blot analysis with different antibodies directed against TMEM16A revealed a number of products with a consistent band at ∼120 kDa, except portal vein, where an 80-kDa band predominated. TMEM16A protein was identified in the smooth muscle layers of 4-μm-thick slices of portal vein, thoracic aorta, and carotid artery. In isolated myocytes, fluorescence specific to a TMEM16A antibody was detected diffusely throughout the cytoplasm, as well as near the membrane. The same antibody used in Western blot analysis of lysates from vascular tissues also recognized an ∼147-kDa mouse TMEM16A-green fluorescent protein (GFP) fusion protein expressed in HEK 293 cells, which correlated to a similar band detected by a GFP antibody. Patch-clamp experiments revealed that I(ClCa) generated by transfection of TMEM16A-GFP in HEK 293 cells displayed remarkable similarities to I(ClCa) recorded in vascular myocytes, including slow kinetics, steep outward rectification, and a response similar to the pharmacological agent niflumic acid. This study shows that TMEM16A expression is robust in murine vascular smooth muscle cells, consolidating the view that this gene is a viable candidate for the native Ca(2+)-activated Cl(-) channel in this cell type.


Respiratory Physiology & Neurobiology | 2003

MAPK regulation of gene expression in airway smooth muscle.

William T. Gerthoffer; Cherie A. Singer

Mitogen-activated protein kinases (MAPK) are important components of signaling modules activated by neurotransmitters, cytokines, and growth factors, as well as chemical and mechanical stressors. In the airway, these external signals produce acute responses that modify smooth muscle contraction and may also induce chronic responses that modify airway structure. Both acute and chronic events in airway remodeling result from altered expression of multiple genes encoding protein mediators of cell-cell signaling, extracellular matrix remodeling, cell cycle control and intracellular signaling pathways. This review will focus on inflammatory and growth factor mediators of cell-cell signaling regulated by the ERK and p38 MAPK pathways in airway smooth muscle (ASM). These signaling mediators affect ASM tissue mechanics, cell migration, and gene expression patterns in a paracrine and autocrine fashion, although the relative importance of each MAPK pathway varies with the stimulus. These events thereby contribute to normal airway function and participate in pathological changes in ASM that accompany symptoms of asthma.


American Journal of Physiology-cell Physiology | 2012

Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension

Abigail S. Forrest; Talia C. Joyce; Marissa L. Huebner; Ramon J. Ayon; Michael Wiwchar; John Joyce; Natalie Freitas; Alison J. Davis; Linda Ye; Dayue Darrel Duan; Cherie A. Singer; Maria L. Valencik; Iain A. Greenwood; Normand Leblanc

Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca(2+) levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca(2+)-activated Cl- channels (Cl(Ca)), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl(Ca) channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca(2+)-activated Cl(-) current [I(Cl(Ca))] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in I(Cl(Ca)) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for Cl(Ca) channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 μM), an l-type Ca(2+) channel blocker, and NFA (30 or 100 μM, with or without 10 μM indomethacin to inhibit cyclooxygenases) or T16A(Inh)-A01 (10 μM), TMEM16A/Cl(Ca) channel inhibitors, than that of control animals. In conclusion, augmented Cl(Ca)/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease.


Pharmacology & Therapeutics | 2015

Epigenetic targets for novel therapies of lung diseases

Brian S. Comer; Mariam Ba; Cherie A. Singer; William T. Gerthoffer

In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is a compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.


American Journal of Physiology-cell Physiology | 2010

Orai1 interacts with STIM1 and mediates capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells.

Lih Chyuan Ng; Deepa Ramduny; Judith A. Airey; Cherie A. Singer; Phillip S. Keller; Xiao-Ming Shen; Honglin Tian; Maria L. Valencik; Joseph R. Hume

Previous studies in mouse pulmonary arterial smooth muscle cells (PASMCs) showed that cannonical transient receptor potential channel TRPC1 and stromal interaction molecule 1 (STIM1) mediate the sustained component of capacitative Ca(2+) entry (CCE), but the molecular candidate(s) that mediate the transient component of CCE remain unknown. The aim of the present study was to examine whether Orai1 mediates the transient component of CCE through activation of STIM1 in mouse PASMCs. In primary cultured mouse PASMCs loaded with fura-2, cyclopiazonic acid (CPA) caused a transient followed by a sustained rise in intracellular Ca(2+) concentration ([Ca(2+)](i)). The transient but not the sustained rise in [Ca(2+)](i) was partially inhibited by nifedipine. The nifedipine-insensitive transient rise in [Ca(2+)](i) and the increase in Mn(2+) quench of fura-2 fluorescence caused by CPA were both reduced in cells treated with Orai1 siRNA. These responses to CPA were further reduced in cells treated with Orai1 and STIM1 small interfering (si)RNA. Moreover, overexpression of STIM1 enhanced the rise in [Ca(2+)](i) and the increase in Mn(2+) quench of fura-2 fluorescence caused by CPA, and these responses were reduced in cells treated with Orai1 siRNA. RT-PCR revealed Orai1 and STIM1 mRNAs, and Western blot analysis identified Orai1 and STIM1 proteins in mouse PASMCs. Furthermore, Orai1 was found to coimmunoprecipitate with STIM1, and the precipitation level of Orai1 was increased in cells subjected to store-depletion. Immunostaining revealed colocalization of Orai1 and STIM1 proteins, and the colocalization of these proteins was more apparent after store-depletion. These data provide direct evidence that the transient component of CCE is mediated by Orai1 channel as a result of STIM1 activation in mouse PASMCs.


American Journal of Physiology-cell Physiology | 2012

TRPC1 and Orai1 interact with STIM1 and mediate capacitative Ca2+ entry caused by acute hypoxia in mouse pulmonary arterial smooth muscle cells

Lih Chyuan Ng; Kathryn G. O'Neill; Dominique French; Judith A. Airey; Cherie A. Singer; Honglin Tian; Xiao-Ming Shen; Joseph R. Hume

Previous studies in pulmonary artery smooth muscle cells (PASMCs) showed that acute hypoxia activates capacitative Ca(2+) entry (CCE) but the molecular candidate(s) mediating CCE caused by acute hypoxia remain unclear. The present study aimed to determine if transient receptor potential canonical 1 (TRPC1) and Orai1 interact with stromal interacting molecule 1 (STIM1) and mediate CCE caused by acute hypoxia in mouse PASMCs. In primary cultured PASMCs loaded with fura-2, acute hypoxia caused a transient followed by a sustained rise in intracellular Ca(2+) concentration ([Ca(2+)](i)). The transient but not sustained rise in [Ca(2+)](i) was partially inhibited by nifedipine. Acute hypoxia also increased the rate of Mn(2+) quench of fura-2 fluorescence that was inhibited by SKF 96365, Ni(2+), La(3+), and Gd(3+), exhibiting pharmacological properties characteristic of CCE. The nifedipine-insensitive rise in [Ca(2+)](i) and the increase in Mn(2+) quench rate were both inhibited in cells treated with TRPC1 antibody or TRPC1 small interfering (si)RNA, in STIM1 siRNA-transfected cells and in Orai1 siRNA-transfected cells. Moreover, overexpression of STIM1 resulted in a marked increase in [Ca(2+)](i) and Mn(2+) quench rate caused by acute hypoxia, and they were reduced in cells treated with TRPC1 antibody and in cells transfected with Orai1 siRNA. Furthermore, TRPC1 and Orai1 coimmunoprecipitated with STIM1 and the precipitation levels of TRPC1 and Orai1 were increased in cells exposed to acute hypoxia. Immunostaining showed colocalizations of TRPC1-STIM1 and Orai1-STIM1, and the colocalizations of these proteins were more apparent in acute hypoxia. These data provide direct evidence that TRPC1 and Orai1 channels mediate CCE through activation of STIM1 in acute hypoxic mouse PASMCs.


Journal of Molecular and Cellular Cardiology | 2010

Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice

Dazhi Xiong; Nathanael S. Heyman; Judith A. Airey; Mi Zhang; Cherie A. Singer; Shanti Rawat; Linda Ye; Rebecca Evans; Dean J. Burkin; Honglin Tian; Diana T. McCloskey; Maria L. Valencik; Fiona C. Britton; Dayue Duan; Joseph R. Hume

Native volume-sensitive outwardly rectifying anion channels (VSOACs) play a significant role in cell volume homeostasis in mammalian cells. However, the molecular correlate of VSOACs has been elusive to identify. The short isoform of ClC-3 (sClC-3) is a member of the mammalian ClC gene family and has been proposed to be a molecular candidate for VSOACs in cardiac myocytes and vascular smooth muscle cells. To directly test this hypothesis, and assess the physiological role of ClC-3 in cardiac function, we generated a novel line of cardiac-specific inducible ClC-3 knock-out mice. These transgenic mice were maintained on a doxycycline diet to preserve ClC-3 expression; removal of doxycycline activates Cre recombinase to inactivate the Clcn3 gene. Echocardiography revealed dramatically reduced ejection fraction and fractional shortening, and severe signs of myocardial hypertrophy and heart failure in the knock-out mice at both 1.5 and 3 weeks off doxycycline. In mice off doxycycline, time-dependent inactivation of ClC-3 gene expression was confirmed in atrial and ventricular cells by qRT-PCR and Western blot analysis. Electrophysiological examination of native VSOACs in isolated atrial and ventricular myocytes 3 weeks off doxycycline revealed a complete elimination of the currents, whereas at 1.5 weeks, VSOAC current densities were significantly reduced, compared to age-matched control mice maintained on doxycycline. These results indicate that ClC-3 is a key component of native VSOACs in mammalian heart and plays a significant cardioprotective role against cardiac hypertrophy and failure.


Circulation Research | 2007

Loss of the α7 Integrin Promotes Extracellular Signal-Regulated Kinase Activation and Altered Vascular Remodeling

Jennifer V. Welser; Naomi Lange; Cherie A. Singer; Margaret Elorza; Paul Scowen; Kathleen D. Keef; William T. Gerthoffer; Dean J. Burkin

Vascular smooth muscle cell (VSMC) proliferation and migration are underlying factors in the development and progression of cardiovascular disease. Studies have shown that altered expression of vascular integrins and extracellular matrix proteins may contribute to the vascular remodeling observed after arterial injury and during disease. We have recently shown that loss of the &agr;7&bgr;1 integrin results in VSMC hyperplasia. To investigate the cellular mechanisms underlying this phenotype, we have examined changes in cell signaling pathways associated with VSMC proliferation. Several studies have demonstrated the mitogen-activated protein kinase signaling pathway is activated in response to vascular injury and disease. In this study, we show that loss of the &agr;7 integrin in VSMCs results in activation of the extracellular signal-regulated kinase and translocation of the activated kinase to the nucleus. Forced expression of the &agr;7 integrin or use of the mitogen-activated protein kinase kinase 1 inhibitor U0126 in &agr;7 integrin–deficient VSMCs suppressed extracellular signal-regulated kinase activation and restored the differentiated phenotype to &agr;7 integrin–null cells in a manner dependent on Ras signaling. &agr;7 Integrin–null mice displayed profound vascular remodeling in response to injury with pronounced neointimal formation and reduced vascular compliance. These findings demonstrate that the &agr;7&bgr;1 integrin negatively regulates extracellular signal-regulated kinase activation and suggests an important role for this integrin as part of a signaling complex regulating VSMC phenotype switching.

Collaboration


Dive into the Cherie A. Singer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge