Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheril Tapia-Rojas is active.

Publication


Featured researches published by Cheril Tapia-Rojas.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease

Alvaro O. Ardiles; Cheril Tapia-Rojas; Madhuchhanda Mandal; Frédéric Alexandre; Alfredo Kirkwood; Nibaldo C. Inestrosa; Adrian G. Palacios

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder associated with progressive memory loss, severe dementia, and hallmark neuropathological markers, such as deposition of amyloid-β (Aβ) peptides in senile plaques and accumulation of hyperphosphorylated tau proteins in neurofibrillary tangles. Recent evidence obtained from transgenic mouse models suggests that soluble, nonfibrillar Aβ oligomers may induce synaptic failure early in AD. Despite their undoubted value, these transgenic models rely on genetic manipulations that represent the inherited and familial, but not the most abundant, sporadic form of AD. A nontransgenic animal model that still develops hallmarks of AD would be an important step toward understanding how sporadic AD is initiated. Here we show that starting between 12 and 36 mo of age, the rodent Octodon degus naturally develops neuropathological signs of AD, such as accumulation of Aβ oligomers and phosphorylated tau proteins. Moreover, age-related changes in Aβ oligomers and tau phosphorylation levels are correlated with decreases in spatial and object recognition memory, postsynaptic function, and synaptic plasticity. These findings validate O. degus as a suitable natural model for studying how sporadic AD may be initiated.


Journal of Medicinal Chemistry | 2014

Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents.

Elisabet Viayna; Irene Sola; Manuela Bartolini; Angela De Simone; Cheril Tapia-Rojas; Felipe G. Serrano; Raimon Sabaté; Jordi Juárez-Jiménez; Belén Pérez; F. Javier Luque; Vincenza Andrisano; M. Victòria Clos; Nibaldo C. Inestrosa; Diego Muñoz-Torrero

We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimers disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase, butyrylcholinesterase, and BACE-1, dual Aβ42 and tau antiaggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction, preventing the loss of synaptic proteins and/or have a positive effect on the induction of long-term potentiation. In vivo studies in APP-PS1 transgenic mice treated ip for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.


Brain Pathology | 2016

Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease

Cheril Tapia-Rojas; Florencia C. Aranguiz; Lorena Varela-Nallar; Nibaldo C. Inestrosa

Alzheimers disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid‐β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin‐S‐positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD.


Translational Psychiatry | 2011

Tetrahydrohyperforin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer's disease: a possible effect on APP processing

Nibaldo C. Inestrosa; Cheril Tapia-Rojas; T N Griffith; Francisco J. Carvajal; Maria J. Benito; A Rivera-Dictter; Anne Alvarez; Felipe G. Serrano; Juan L. Hancke; Patricia V. Burgos; Jorge Parodi; Lorena Varela-Nallar

Alzheimers disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ) accumulation and synaptic alterations. Previous studies indicated that hyperforin, a component of the St Johns Wort, prevents Aβ neurotoxicity and some behavioral impairments in a rat model of AD. In this study we examined the ability of tetrahydrohyperforin (IDN5607), a stable hyperforin derivative, to prevent the cognitive deficit and synaptic impairment in an in vivo model of AD. In double transgenic APPswe/PSEN1ΔE9 mice, IDN5706 improves memory and prevents the impairment of synaptic plasticity in a dose-dependent manner, inducing a recovery of long-term potentiation. In agreement with these findings, IDN5706 prevented the decrease in synaptic proteins in hippocampus and cortex. In addition, decreased levels of tau hyperphosphorylation, astrogliosis, and total fibrillar and oligomeric forms of Aβ were determined in double transgenic mice treated with IDN5706. In cultured cells, IDN5706 decreased the proteolytic processing of the amyloid precursor protein that leads to Aβ peptide generation. These findings indicate that IDN5706 ameliorates AD neuropathology and could be considered of therapeutic relevance in AD treatment.


Molecular Neurodegeneration | 2014

Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice

Felipe G. Serrano; Cheril Tapia-Rojas; Francisco J. Carvajal; Juan L. Hancke; Waldo Cerpa; Nibaldo C. Inestrosa

Alzheimer’s disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer’s model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.


Journal of Alzheimer's Disease | 2013

Peroxisome Proliferators Reduce Spatial Memory Impairment, Synaptic Failure, and Neurodegeneration in Brains of a Double Transgenic Mice Model of Alzheimer's Disease

Nibaldo C. Inestrosa; Francisco J. Carvajal; Juan M. Zolezzi; Cheril Tapia-Rojas; Felipe G. Serrano; Daniel Karmelic; Enrique M. Toledo; Andrés Toro; Jessica Toro; Manuel J. Santos

Alzheimers disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-β peptide (Aβ), increase of oxidative stress, and synaptic alterations. The scavenging of reactive oxygen species through their matrix enzyme catalase is one of the most recognized functions of peroxisomes. The induction of peroxisome proliferation is attained through different mechanisms by a set of structurally diverse molecules called peroxisome proliferators. In the present work, a double transgenic mouse model of AD that co-expresses a mutant human amyloid-β protein precursor (AβPPswe) and presenilin 1 without exon 9 (PS1dE9) was utilized in order to assess the effect of peroxisomal proliferation on Aβ neurotoxicity in vivo. Mice were tested for spatial memory and their brains analyzed by cytochemical, electrophysiological, and biochemical methods. We report here that peroxisomal proliferation significantly reduces (i) memory impairment, found in this model of AD; (ii) Aβ burden and plaque-associated acetylcholinesterase activity; (iii) neuroinflammation, measured by the extent of astrogliosis and microgliosis; and (iv) the decrease in postsynaptic proteins, while promoting synaptic plasticity in the form of long-term potentiation. We concluded that peroxisomal proliferation reduces various AD neuropathological markers and peroxisome proliferators may be considered as potential therapeutic agents against the disease.


Brain Pathology | 2015

Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease

Nibaldo C. Inestrosa; Juvenal A. Ríos; Pedro Cisternas; Cheril Tapia-Rojas; Daniela S. Rivera; Nady Braidy; Juan M. Zolezzi; Juan A. Godoy; Francisco J. Carvajal; Alvaro O. Ardiles; Francisco Bozinovic; Adrian G. Palacios; Perminder S. Sachdev

Alzheimers disease (AD) is the most common neurodegenerative disorder and the leading cause of age‐related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild‐type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age‐related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative‐activated receptor γ coactivator‐1α (PGC‐1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.


Biochemical Journal | 2015

Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β in vivo

Cheril Tapia-Rojas; Andreas Schüller; Carolina B. Lindsay; Roxana C. Ureta; Cristóbal Mejías-Reyes; Juan L. Hancke; Francisco Melo; Nibaldo C. Inestrosa

Wnt/β-catenin signalling is an important pathway that regulates multiple biological processes, including cell adhesion and determination of cell fate during animal development; in the adult nervous system it regulates the structure and function of synapses. Wnt-signalling dysfunction is associated with several neurodegenerative diseases such as schizophrenia and Alzheimers disease. The use of natural compounds is an interesting strategy in the search for drugs with the therapeutic potential to activate this signalling pathway. In the present study, we report that andrographolide (ANDRO), a component of Andrographis paniculata, is a potent activator of Wnt signalling. Our results indicate that ANDRO activates this pathway, inducing the transcription of Wnt target genes by a mechanism that bypasses Wnt ligand binding to its receptor. In vitro kinase assays demonstrate that ANDRO inhibits glycogen synthase kinase (GSK)-3β by a non-ATP-competitive, substrate-competitive mode of action. In silico analyses suggest that ANDRO interacts with the substrate-binding site of GSK-3β. Finally, we demonstrated that the increase seen in the levels of GSK-3β phosphorylated at Ser⁹ is the result of an autoregulatory mechanism of the kinase in vivo, although not through activation of protein phosphatase type 1. Our results suggest that ANDRO could be used as a potential therapeutic drug for disorders caused by Wnt-signalling dysfunction such as neurodegenerative diseases.


PLOS ONE | 2015

Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus.

Lucia Y. Du; Lily Y-L. Chang; Alvaro O. Ardiles; Cheril Tapia-Rojas; Joaquín Araya; Nibaldo C. Inestrosa; Adrian G. Palacios; Monica L. Acosta

New studies show that the retina also undergoes pathological changes during the development of Alzheimer’s disease (AD). While transgenic mouse models used in these previous studies have offered insight into this phenomenon, they do not model human sporadic AD, which is the most common form. Recently, the Octodon degus has been established as a sporadic model of AD. Degus display age-related cognitive impairment associated with Aβ aggregates and phosphorylated tau in the brain. Our aim for this study was to examine the expression of AD-related proteins in young, adult and old degus retina using enzyme-linked or fluorescence immunohistochemistry and to quantify the expression using slot blot and western blot assays. Aβ4G8 and Aβ6E10 detected Aβ peptides in some of the young animals but the expression was higher in the adults. Aβ peptides were observed in the inner and outer segment of the photoreceptors, the nerve fiber layer (NFL) and ganglion cell layer (GCL). Expression was higher in the central retinal region than in the retinal periphery. Using an anti-oligomer antibody we detected Aβ oligomer expression in the young, adult and old retina. Immunohistochemical labeling showed small discrete labeling of oligomers in the GCL that did not resemble plaques. Congo red staining did not result in green birefringence in any of the animals analyzed except for one old (84 months) animal. We also investigated expression of tau and phosphorylated tau. Expression was seen at all ages studied and in adults it was more consistently observed in the NFL-GCL. Hyperphosphorylated tau detected with AT8 antibody was significantly higher in the adult retina and it was localized to the GCL. We confirm for the first time that Aβ peptides and phosphorylated tau are expressed in the retina of degus. This is consistent with the proposal that AD biomarkers are present in the eye.


PLOS ONE | 2015

Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy.

Viviana A. Cavieres; Alexis González; Vanessa C. Muñoz; Claudia P. Yefi; Hianara A. Bustamante; Rafael R. Barraza; Cheril Tapia-Rojas; Carola Otth; María José Barrera; Carlos B. González; Gonzalo A. Mardones; Nibaldo C. Inestrosa; Patricia V. Burgos

Alzheimers disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) peptide. We have previously shown that the compound tetrahydrohyperforin (IDN5706) prevents accumulation of Aβ species in an in vivo model of AD, however the mechanism that explains this reduction is not well understood. We show herein that IDN5706 decreases the levels of ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), a key chaperone related to endoplasmic-reticulum-associated degradation (ERAD). Moreover, we observed that low levels of EDEM1 correlated with a strong activation of autophagy, suggesting a crosstalk between these two pathways. We observed that IDN5706 perturbs the glycosylation and proteolytic processing of the amyloid precursor protein (APP), resulting in the accumulation of immature APP (iAPP) in the endoplasmic reticulum. To investigate the contribution of autophagy, we tested the effect of IDN5706 in Atg5-depleted cells. We found that depletion of Atg5 enhanced the accumulation of iAPP in response to IDN5706 by slowing down its degradation. Our findings reveal that IDN5706 promotes degradation of iAPP via the activation of Atg5-dependent autophagy, shedding light on the mechanism that may contribute to the reduction of Aβ production in vivo.

Collaboration


Dive into the Cheril Tapia-Rojas's collaboration.

Top Co-Authors

Avatar

Nibaldo C. Inestrosa

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Francisco J. Carvajal

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Felipe G. Serrano

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Waldo Cerpa

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan L. Hancke

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia V. Burgos

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Rodrigo G. Mira

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge