Chern Ein Oon
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chern Ein Oon.
Blood | 2010
Helen Sheldon; Emily B. Heikamp; Helen Turley; Rebecca Dragovic; Peter H. Thomas; Chern Ein Oon; Russell Leek; Mariola J. Edelmann; Benedikt M. Kessler; Richard C.A. Sainson; Ian L. Sargent; Adrian L. Harris
Notch signaling is an evolutionary conserved pathway that is mediated by cell-cell contact. It is involved in a variety of developmental processes and has an essential role in vascular development and angiogenesis. Delta-like 4 (Dll4) is a Notch ligand that is up-regulated during angiogenesis. It is expressed in endothelial cells and regulates the differentiation between tip cells and stalk cells of neovasculature. Here, we present evidence that Dll4 is incorporated into endothelial exosomes. It can also be incorporated into the exosomes of tumor cells that overexpress Dll4. These exosomes can transfer the Dll4 protein to other endothelial cells and incorporate it into their cell membrane, which results in an inhibition of Notch signaling and a loss of Notch receptor. Transfer of Dll4 was also shown in vivo from tumor cells to host endothelium. Addition of Dll4 exosomes confers a tip cell phenotype on the endothelial cell, which results in a high Dll4/Notch-receptor ratio, low Notch signaling, and filopodia formation. This was further evidenced by increased branching in a tube-formation assay and in vivo. This reversal in phenotype appears to enhance vessel formation and is a new form of signaling for Notch ligands that expands their signaling potential beyond cell-cell contact.
Cancer Research | 2011
Richard C.A. Sainson; Chern Ein Oon; Helen Turley; Russell Leek; Helen Sheldon; Esther Bridges; Wen Shi; Cameron Snell; Emma T. Bowden; Herren Wu; Partha S. Chowdhury; Angela J. Russell; Craig P. Montgomery; Richard Poulsom; Adrian L. Harris
Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.
Future Oncology | 2011
Esther Bridges; Chern Ein Oon; Adrian L. Harris
The growth of new blood vessels (angiogenesis) is critical for tumor growth and progression. The highly conserved Notch signaling pathway is involved in a variety of cell fate decisions and regulates many cellular biological processes, including angiogenesis. Aberrant Notch signaling has also been implicated in tumorigenesis. Notch ligands and receptors are expressed on many different cell types present within the tumor, including tumor cells and the stromal compartment. This article highlights in particular the various mechanisms by which Notch signaling can mediate tumor angiogenesis. The most studied Notch ligands, Delta-like 4 and Jagged1, competitively regulate tumor angiogenesis. Studies have demonstrated that Delta-like 4 functions as a negative regulator of tumor angiogenesis, whereas Jagged1 promotes angiogenesis. Understanding the implications of Notch signaling in various tumor backgrounds will enable the effects of specific Notch signaling inhibition on tumor angiogenesis and growth to be evaluated as a potential for a novel antiangiogenic therapy in the clinic.
Asian Pacific Journal of Cancer Prevention | 2014
Nowroji Kavitha; Soundararajan Vijayarathna; Subramanion L. Jothy; Chern Ein Oon; Yeng Chen; Jagat R. Kanwar; Sreenivasan Sasidharan
MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.
Biochemical Society Transactions | 2011
Chern Ein Oon; Adrian L. Harris
Notch signalling is a key pathway controlling angiogenesis in normal tissues and tumours. This has become a major focus of development of anticancer therapy, but to develop this appropriately, we need further understanding of the mechanisms of regulation of Dll4 (Delta-like ligand 4), a key endothelial Notch ligand. Dll4 and VEGF (vascular endothelial growth factor) cross-talk, with VEGF up-regulation of Dll4 and Dll4 down-regulating VEGFR (VEGF receptor) signalling. Both are essential for normal angiogenesis, and blockade of one may produce compensatory changes in the other. The present review considers recent developments in the regulation of Dll4 expression and functions, its role as a mechanism of resistance to anti-angiogenic therapy, and methods needed to develop effective therapy against this target.
European Journal of Pharmacology | 2015
Chern Ein Oon; Carina Strell; Keng Yoon Yeong; Arne Östman; Jai Prakash
Gemcitabine remains the standard treatment for pancreatic cancer, although most patients acquire resistance to the therapy. Up-regulated in pancreatic cancer, SIRT1 is involved in tumorigenesis and drug resistance. However the mechanism through which SIRT1 regulates drug sensitivity in cancer cells is mainly unknown. We hypothesise that inhibiting SIRT1 activity may increase sensitivity of pancreatic cancer cells to gemcitabine treatment through the regulation of apototic cell death, cell cycle, epithelial-mesenschymal-transition (EMT) and senescence. We demonstrate that gemcitabine or 6-Chloro-2,3,4,9-tetrahydro-1 H-Carbazole-1-carboxamide (EX527) SIRT1 inhibitor reduces PANC-1 cell proliferation in vitro. EX527 enhanced sensitivity of PANC-1 cells to gemcitabine treatment through increased apoptosis. However, EX527 displayed no beneficial effect either as a monotreatment or in combination with gemcitabine in the modulation of cell cycle progression. Combination treatment did not reverse the two phenomena known to affect drug sensitivity, namely EMT and senescence, which are both induced by gemcitabine. Unexpectedly, EX527 promoted PANC-1 xenograft tumour growth in SCID mice compared to control group. Dual tX527 and gemcitabine displayed no synergistic effect compared to gemcitabine alone. The study reveals that SIRT1 is involved in chemoresistance and that inhibiting SIRT1 activity with EX527 sensitised PANC-1 cells to gemcitabine treatment in vitro. Sensitisation of cells is shown to be mainly through induction of micronuclei formation as a result of DNA damage and apoptosis in vitro. However, the absence of positive combinatorial effects in vivo indicates possible effects on cells of the tumor microenvironment and suggests caution regarding the clinical relevance of tissue culture findings with EX527.
Asian Pacific Journal of Cancer Prevention | 2013
Subramanion Jo Thy Lachumy; Chern Ein Oon; Subramanian Deivanai; Dharmaraj Saravanan; Soundararajan Vijayarathna; Yee Siew Choong; Chen Yeng; Lachimanan Yoga Latha; Sreenivasan Sasidharan
Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green anti- irradiation approach for the betterment of human beings without high cost, side effects and toxicity.
Cell Biochemistry and Biophysics | 2013
Ahmed Ismail Hassan Moad; Tengku Sifzizul Tengku Muhammad; Chern Ein Oon; Mei Lan Tan
Autophagy is an evolutionarily conserved lysosomal degradation pathway and plays a critical role in the homeostatic process of recycling proteins and organelles. Functional relationships have been described between apoptosis and autophagy. Perturbations in the apoptotic machinery have been reported to induce autophagic cell deaths. Inhibition of autophagy in cancer cells has resulted in cell deaths that manifested hallmarks of apoptosis. However, the molecular relationships and the circumstances of which molecular pathways dictate the choice between apoptosis and autophagy are currently unknown. This study aims to identify specific gene expression of rapamycin-induced autophagy and the effects of rapamycin when the autophagy process is inhibited. In this study, we have demonstrated that rapamycin is capable of inducing autophagy in T-47D breast carcinoma cells. However, when the autophagy process was inhibited by 3-MA, the effects of rapamycin became apoptotic. The Phlda1 gene was found to be up-regulated in both autophagy and apoptosis and silencing this gene was found to reduce both activities, strongly suggests that Phlda1 mediates and positively regulates both autophagy and apoptosis pathways.
Microvascular Research | 2016
Yasser M. Tabana; Loiy Elsir Ahmed Hassan; Mohamed B. Khadeer Ahamed; Saad Sabbar Dahham; Muhammad Adnan Iqbal; Mohammed Ali Ahmed Saeed; Shamsuddin Sultan Khan; Doblin Sandai; Aman Shah Abdul Majid; Chern Ein Oon; Amin Malik Shah Abdul Majid
We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
Food and Chemical Toxicology | 2012
Mei Lan Tan; Heng Kean Tan; Chern Ein Oon; Masanori Kuroyanagi; Tengku Sifzizul Tengku Muhammad
14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.